
Parallel Multi-Dimensional LSTM, With
Application to Fast Biomedical Volumetric Image

Segmentation

Marijn F. Stollenga*123, Wonmin Byeon*1245, Marcus Liwicki4, and
Juergen Schmidhuber123

*Shared first authors, both Authors contributed equally to this work. Corresponding authors:
marijn@idsia.ch, wonmin.byeon@dfki.de

1Istituto Dalle Molle di Studi sull’Intelligenza Artificiale (The Swiss AI Lab IDSIA)
2Scuola universitaria professionale della Svizzera italiana (SUPSI), Switzerland

3Universitá della Svizzera italiana (USI), Switzerland
4University of Kaiserslautern, Germany

5German Research Center for Artificial Intelligence (DFKI), Germany

July 13, 2015

Abstract

Convolutional Neural Networks (CNNs) can be shifted across 2D images or
3D videos to segment them. They have a fixed input size and typically perceive
only small local contexts of the pixels to be classified as foreground or background.
In contrast, Multi-Dimensional Recurrent NNs (MD-RNNs) can perceive the en-
tire spatio-temporal context of each pixel in a few sweeps through all pixels, es-
pecially when the RNN is a Long Short-Term Memory (LSTM). Despite these
theoretical advantages, however, unlike CNNs, previous MD-LSTM variants were
hard to parallelize on GPUs. Here we re-arrange the traditional cuboid order of
computations in MD-LSTM in pyramidal fashion. The resulting PyraMiD-LSTM
is easy to parallelize, especially for 3D data such as stacks of brain slice images.
PyraMiD-LSTM achieved best known pixel-wise brain image segmentation results
on MRBrainS13 (and competitive results on EM-ISBI12).

1 Introduction
Long Short-Term Memory (LSTM) networks [1, 2] are recurrent neural networks (RNNs)
initially designed for sequence processing. They achieved state-of-the-art results on
challenging tasks such as handwriting recognition [3], large vocabulary speech recog-
nition [4, 5] and machine translation [6]. Their architecture contains gates to store and
read out information from linear units called error carousels that retain information
over long time intervals, which is hard for traditional RNNs.

1

ar
X

iv
:1

50
6.

07
45

2v
1 

 [
cs

.C
V

] 
 2

4 
Ju

n 
20

15



Multi-Dimensional LSTM networks (MD-LSTM [7]) connect hidden LSTM units
in grid-like fashion1. Two dimensional MD-LSTM is applicable to image segmenta-
tion [7, 8, 9] where each pixel is assigned to a class such as background or foreground.
Each LSTM unit sees a pixel and receives input from neighboring LSTM units, thus
recursively gathering information about all other pixels in the image.

There are many biomedical 3D volumetric data sources, such as computed tomog-
raphy (CT), magnetic resonance (MR), and electron microscopy (EM). Most previ-
ous approaches process each 2D slice separately, using image segmentation algorithms
such as snakes [10], random forests [11] and Convolutional Neural Networks [12]. 3D-
LSTM, however, can process the full context of each pixel in such a volume through
8 sweeps over all pixels by 8 different LSTMs, each sweep in the general direction of
one of the 8 directed volume diagonals.

Due to the sequential nature of RNNs, however, MD-LSTM parallelization was dif-
ficult, especially for volumetric data. The novel Pyramidal Multi-Dimensional LSTM
(PyraMiD-LSTM) networks introduced in this paper use a rather different topology
and update strategy. They are easier to parallelize, need fewer computations overall,
and scale well on GPU architectures.

PyraMiD-LSTM is applied to two challenging tasks involving segmentation of bi-
ological volumetric images. Competitive results are achieved on EM-ISBI12 [13]; best
known results are achieved on MRBrainS13 [14].

2 Method
We will first describe standard one-dimensional LSTM [2] and MD-LSTM. Then we
introduce topology changes to construct the PyraMiD-LSTM, which is formally de-
scribed and discussed.

The original LSTM unit consists of an input gate (i), forget gate2 (f ), output gate
(o), and memory cell (c) which control what should be remembered or forgotten over
potentially long periods of time. All gates and activations are real-valued vectors:
x, i, f, c̃, c, o, h ∈ RT , where T is the length of the input. The gates and activations at
discrete time t (t=1,2,...) are computed as follows:

it = σ(xt · θxi + ht-1 · θhi + θibias), (1)
ft = σ(xt · θxf + ht-1 · θhf + θfbias), (2)

c̃t = tanh(xt · θxc̃ + ht-1 · θhc̃ + θc̃bias), (3)
ct = c̃t � it + ct-1 � ft, (4)

ot = σ(xt · θxo + ht-1 · θho + θobias), (5)
ht = ot � tanh(ct) (6)

where (·) is a matrix multiplication, (�) an element-wise multiplication, and θ denotes
the weights. c̃ is the input to the ’cell’ c, which is gated by the input gate, and h

1For example, in two dimensions this yields 4 directions; up, down, left and right.
2Although the forget gate output is inverted and actually ‘remembers’ when it is on, and forgets when it

is off, the traditional nomenclature is kept.

2



is the output. The non-linear functions σ and tanh are applied element-wise, where
σ(x) = 1

1+e−x . Equations (1, 2) determine gate activations, Equation (3) cell inputs,
Equation (4) the new cell states (here ‘memories’ are stored or forgotten), Equation (5)
output gate activations which appear in Equation (6), the final output.

2.1 Pyramidal Connection Topology

(b) 'Turned' MD-LSTM (c) PyraMiD LSTM(a) Standard MD-LSTM

Figure 1: The standard MD-LSTM topology (a) evaluates the context of each pixel recursively
from neighboring pixel contexts along the axes, that is, pixels on a simplex can be processed in
parallel. Turning this order by 45◦ (b) causes the simplex to become a plane (a column vector
in the 2D case here). The resulting gaps are filled by adding extra connections, to process more
than 2 elements of the context (c).

In MD-LSTMs, connections are aligned with the grid axes. In 2D, these directions
are up, down, left and right. A 2D-LSTM adds the pixel-wise outputs of 4 LSTMs, one
scanning the image pixel by pixel from north-west to south-east, one from north-east to
south-west, one from south-west to north-east, and one from south-east to north-west.

If the connections are rotated by 45◦, all inputs to all units come from either left,
right, up, or down (left in case of Figure 1–b). This greatly facilitates parallelization,
since all the elements of a whole grid row can be computed independently, which does
not work for MD-LSTM simplexes, whose sizes vary. However, this introduces context
gaps as in Figure 1–b. By adding an extra input, these gaps are filled as in Figure 1–c.

A similar connection strategy has been previously used to speed up non-euclidian
distance computations on surfaces [15]. There are however important differences:

• We can exploit efficient GPU-based CUDA convolution operations, but in a way
unlike what is done in CNNs, as will be explained below.

• As a result of these operations, input filters that are bigger than the necessary
3 × 3 filters arise naturally, creating overlapping contexts. Such redundancy
turns out to be beneficial and is used in our experiments.

• We apply several layers of complex processing with multi-channeled outputs and
several state-variables for each pixel, instead of having a single value per pixel
as in distance computations.

• Our application is focused on volumetric data.

3



Figure 2: On the left we see the context scanned so far by one of the 8 LSTMs of a 3D-LSTM:
a cube. In general, given d dimensions, 2d LSTMs are needed. On the right we see the context
scanned so far by one of the 6 LSTMs of a 3D-PyraMiD-LSTM: a pyramid. In general, 2 × d
LSTMs are needed.

One of the striking differences between PyraMiD-LSTM and MD-LSTM is the
shape of the scanned contexts. Each LSTM of an MD-LSTM scans rectangle-like
contexts in 2D or cuboids in 3D. Each LSTM of a PyraMiD-LSTM scans triangles
in 2D and pyramids in 3D (see Figure 2). An MD-LSTM needs 8 LSTMs to scan a
volume, while a PyraMiD-LSTM needs only 6, since it takes 8 cubes or 6 pyramids to
fill a volume. Given dimension d, the number of LSTMs grows as 2d for an MD-LSTM
(exponentially) and 2× d for a PyraMiD-LSTM (linearly).

2.2 PyraMiD-LSTM

C-LSTM C-LSTM

Σ

PyraMiD-LSTM

C-LSTM

C-LSTM

C-LSTM

Fully
Connected
Layer tanh

Fully
Connected
Layer softmax

C-LSTM

Input Data

Figure 3: PyraMiD-LSTM network architecture. Randomly rotated and flipped inputs are sam-
pled from random locations, then fed to six C-LSTMs over three axes. The outputs from all
C-LSTMs are combined into one PyraMiD-LSTM layer and sent to the fully-connected layer.
tanh is used as a squashing function in the hidden layer. Several PyraMiD-LSTM layers can be
applied. The last layer is fully-connected and uses a softmax function to compute probabilities
for each class for each pixel.

Here we explain the PyraMiD-LSTM network architecture for 3D volumes (see
Figure 3). It consists of six LSTMs with RNN-tailored convolutions (C-LSTM), one for
each direction, to create the full context of each pixel. Note that each of these C-LSTMs
is a entire LSTM RNN, processing the entire volume in one direction. The directions
D are defined over the three axes (x, y, z): D = {(·, ·, 1), (·, ·,−1), (·, 1, ·), (·,−1, ·),
(1, ·, ·), (−1, ·, ·)}.

Each C-LSTM performs computations in a plane moving in the defined direction.
The symbol (·) in a dimension signifies that the plane is parallel to this axis, and a

4



1 or −1 implies that the computation is moving along the positive or negative di-
rection of that axis, respectively. The input is x ∈ RW×H×D×C , where W is the
width, H the height, D the depth, and C the number of channels of the input, or hid-
den units in the case of second- and higher layers. Similarly, we define the volumes
fd, id, od, c̃d, cd, hd, h ∈ RW×H×D×O, where d ∈ D is a direction and O is the num-
ber of hidden units (per pixel). Since each direction needs a separate volume, we denote
volumes with (·)d.

To keep the equations readable, we omit the time index below: ht becomes h and
ht−1 becomes h-1. The time index t is bound to the axis along which computations are
performed. For instance, for direction d = (·, ·, 1), vd refers to the plane orthogonal
to axis z; i.e. vx,y,z,c for x = 1..X, y = 1..Y, c = 1..C, and z = t. For a negative
direction d = (·, ·,−1), the plane is the same but moves in the opposite direction:
z = Z − t. Furthermore, vd-1 refers to the previous plane, in this case vx,y,z,c for
x = 1..X, y = 1..Y, c = 1..C, z = t − 1. A special case is the first plane in each
direction, which does not have a previous plane, hence we omit the corresponding
computation. The following functions are defined for all planes and all directions:

C-LSTM:

id = σ(x ∗ θdxi + hd-1 ∗ θdhi + θdibias), (7)
fd = σ(x ∗ θdxf + hd-1 ∗ θdhf + θdfbias), (8)

c̃d = tanh(x ∗ θdxc̃ + hd-1 ∗ θdhc̃ + θdc̃bias), (9)
cd = c̃d � id + cd-1 � fd, (10)

od = σ(x ∗ θdxo + hd-1 ∗ θdho + θdobias), (11)
hd = od � tanh(cd), (12)

where (∗) is a RNN-tailored convolution3, and h is the output of the layer. Note
that in C-LSTMs the convolution operations propagate information ‘sideways’ over the
axis of the data. This is very different from CNNs where the convolution operations
propagate information upwards to the next layer. All biases are the same for all LSTM
units (i.e., no positional biases are used). The outputs hd for all directions are added,
combining all C-LSTMs into one PyraMiD-LSTM:

h =
∑
d∈D

hd. (13)

Fully-Connected Layer: Each PyraMiD-LSTM layer is connected to a fully-
connected layer, and the output is squashed by the hyperbolic tangent (tanh) function.
At the end, a softmax function is applied after the last fully-connected layer.

3 Experiments
We evaluate our approach on two 3D biomedical image segmentation datasets: electron
microscopy (EM) and MR Brain images.

3In 3D volumes, convolutions are performed in 2D; in general an n-D volume requires n-1-D convolu-
tions. All convolutions have stride 1, and their filter sizes should at least be 3×3 in each dimension to create
the full context.

5



EM dataset The EM dataset [13] is provided by the ISBI 2012 workshop on Seg-
mentation of Neuronal Structures in EM Stacks [16]. Two stacks consist of 30 slices
of 512× 512 pixels obtained from a 2× 2× 1.5 µm3 microcube with a resolution of
4 × 4 × 50 nm3/pixel and binary labels. One stack is used for training, the other for
testing. Target data consists of binary labels (membrane and non-membrane).

MR Brain dataset The MR Brain images are provided by the ISBI 2015 workshop
on Neonatal and Adult MR Brain Image Segmentation (ISBI NEATBrainS15) [14].
The dataset consists of twenty fully annotated high-field (3T) multi-sequences: 3D T1-
weighted scan (T1), T1-weighted inversion recovery scan (IR), and fluid-attenuated
inversion recovery scan (FLAIR). The dataset is divided into a training set with five
volumes and a test set with fifteen volumes. All scans are bias-corrected and aligned.
Each volume includes 48 slices with 240×240 pixels (3mm slice thickness). The slices
are manually segmented through nine labels: cortical gray matter, basal ganglia, white
matter, white matter lesions, cerebrospinal fluid in the extracerebral space, ventricles,
cerebellum, brainstem, and background. Following the ISBI NEATBrainS15 workshop
procedure, all labels are grouped into four classes and background: 1) cortical gray
matter and basal ganglia (GM), 2) white matter and white matter lesions (WM), 3)
cerebrospinal fluid and ventricles (CSF), and 4) cerebellum and brainstem. Class 4) is
ignored for the final evaluation as required.

Sub-volumes and Augmentation The full dataset requires more than the 12 GB of
memory provided by our GPU, hence we train and test on sub-volumes. We randomly
pick a position in the full data and extract a smaller cube (see the details in Bootstrap-
ping). This cube is possibly rotated at a random angle over some axis and can be flipped
over any axis. For EM images, we rotate over the z-axis and flipped sub-volumes with
50% chance along x, y, and z axes. For MR brain images, rotation is disabled; only
flipping along the x direction is considered, since brains are (mostly) symmetric in this
direction.

During test-time, rotations and flipping are disabled and the results of all sub-
volumes are stitched together using a Gaussian kernel, providing the final result.

Pre-processing We normalize each input slice towards a mean of zero and variance
of one, since the imaging methods sometimes yield large variability in contrast and
brightness. We do not apply the complex pre-processing common in biomedical image
segmentation [11].

We apply simple pre-processing on the three datatypes of the MR Brain dataset,
since they contain large brightness changes under the same label (even within one
slice; see Figure 5). From all slices we subtract the Gaussian smoothed images (filter
size: 31 × 31, σ = 5.0), then a Contrast-Limited Adaptive Histogram Equalization
(CLAHE) [17] is applied to enhance the local contrast (tile size: 16×16, contrast limit:
2.0). An example of the images after pre-processing is shown in Figure 5. The original
and pre-processed images are all used, except the original IR images (Figure 5b), which
have high variability.

6



Training We apply RMS-prop [18, 19] with momentum. We define a
ρ←− b to be

an = ρan + (1 − ρ)bn, where a, b ∈ RN . The following equations hold for every
epoch:

E = (y∗ − y)2, (14)

MSE
ρMSE←−−−− ∇2

θE, (15)

G =
∇θE√
MSE + ε

, (16)

M
ρM←−− G, (17)

θ = θ − λlrM, (18)

where y∗ is the target, y is the output from the networks, E is the squared loss, MSE
a running average of the variance of the gradient, ∇2 is the element-wise squared gra-
dient, G the normalized gradient, M the smoothed gradient, and θ the weights. This
results in normalized gradients of similar size for all weights, such that even weights
with small gradients get updated. This also helps to deal with vanishing gradients [20].

We use a decaying learning rate: λlr = 10−6 + 10−2
(

100

√
1
2

)epoch
, which starts

at λlr ≈ 10−2 and halves every 100 epochs asymptotically towards λlr = 10−6. Other
hyper-parameters used are ε = 10−5, ρMSE = 0.9, and ρM = 0.9.

Bootstrapping To speed up training, we run three learning procedures with increas-
ing sub-volume sizes: first, 3000 epochs with size 64 × 64 × 8, then 2000 epochs
with size 128× 128× 15. Finally, for the EM-dataset, we train 1000 epochs with size
256× 256× 20, and for the MR Brain dataset 1000 epochs with size 240× 240× 25.
After each epoch, the learning rate λlr is reset.

Experimental Setup All experiments are performed on a desktop computer with an
NVIDIA GTX TITAN X 12GB GPU. For GPU implementation, the NVIDIA CUDA
Deep Neural Network library (cuDNN) [21] is used. On the MR brain dataset, training
took around three days, and testing per volume took around 2 minutes.

We use exactly the same hyper-parameters and architecture for both datasets. Our
networks contain three PyraMiD-LSTM layers. The first PyraMiD-LSTM layer has
16 hidden units followed by a fully-connected layer with 25 hidden units. In the next
PyraMiD-LSTM layer, 32 hidden units are connected to a fully-connected layer with
45 hidden units. In the last PyraMiD-LSTM layer, 64 hidden units are connected to the
fully-connected output layer whose size equals the number of classes.

The convolutional filter size for all PyraMiD-LSTM layers is set to 7×7. The total
number of weights is 10,751,549, and all weights are initialized according to a uniform
distribution: U(−0.1, 0.1).

3.1 Neuronal Membrane Segmentation
Evaluation metrics Three error metrics evaluate the following factors:

7



Table 1: Performance comparison on EM images. Some of the competing methods reported in
the ISBI 2012 website are not yet published. Comparison details can be found under http:
//brainiac2.mit.edu/isbi_challenge/leaders-board.

Group Rand Err. Warping Err.(×10−3) Pixel Err.

Human 0.002 0.0053 0.001
Simple Thresholding 0.450 17.14 0.225

IDSIA [12] 0.050 0.420 0.061
DIVE 0.048 0.374 0.058
PyraMiD-LSTM 0.047 0.462 0.062

IDSIA-SCI 0.0189 0.617 0.103
DIVE-SCI 0.0178 0.307 0.058

• Rand error [22]: 1 - F-score of rand index, which measures similarity between
two segmentations on the foreground.

• Warping error [23]: topological disagreements (object splits and mergers)

• Pixel error: 1 - F-score of pixel similarity

(a) Input (b) PyraMiD-LSTM

Figure 4: Segmentation results on EM dataset (slice 26)

Results Membrane segmentation is evaluated through an online system provided by
the ISBI 2012 organizers. Comparisons to other methods are reported in Table 1.
The teams IDSIA and DIVE provide membrane probability maps for each pixel, like
our method. These maps are adapted by the post-processing technique of the teams
SCI [24], which directly optimizes the rand error (DIVE-SCI (top-1) and IDSIA-SCI
(top-2)); this is most important in this particular segmentation task. Without post-
processing, PyraMiD-LSTM networks outperform other methods in rand error, and
are competitive in wrapping and pixel errors. Of course, performance could be fur-
ther improved by applying post-processing techniques. Figure 4 shows an example
segmentation result.

8

http://brainiac2.mit.edu/isbi_challenge/leaders-board
http://brainiac2.mit.edu/isbi_challenge/leaders-board


Table 2: The performance comparison on MR brain images.

Structure GM WM CFS

Metric DC MD AVD DC MD AVD DC MD AVD Rank
(%) (mm) (%) (%) (mm) (%) (%) (mm) (%)

BIGR2 84.65 1.88 6.14 88.42 2.36 6.02 78.31 3.19 22.8 6
KSOM GHMF 84.12 1.92 5.44 87.96 2.49 6.59 82.10 2.71 12.8 5
MNAB2 84.50 1.69 7.10 88.04 2.12 7.73 82.30 2.27 8.73 4
ISI-Neonatology 85.77 1.62 6.62 88.66 2.06 6.96 81.08 2.66 9.77 3
UNC-IDEA 84.36 1.62 7.04 88.69 2.06 6.46 82.81 2.35 10.5 2

PyraMiD-LSTM 84.82 1.69 6.77 88.33 2.07 7.05 83.72 2.14 7.10 1

3.2 MR Brain Segmentation
Evaluation metrics The results are compared based on the following three measures:

• The DICE overlap (DC) [25]: spatial overlap between the segmented volume and
ground truth

• The modified Hausdorff distance (MD) [26]: 95th-percentile Hausdorff distance
between the segmented volume and ground truth

• The absolute volume difference (AVD) [27]: the absolute difference between
segmented and ground truth volume, normalized over the whole volume.

Results MR brain image segmentation results are evaluated by the ISBI NEATBrain15
organizers [14] who provided the extensive comparison to other approaches on http:
//mrbrains13.isi.uu.nl/results.php. Table 2 compares our results to
those of the top five teams. The organizers compute nine measures in total and rank all
teams for each of them separately. These ranks are then summed per team, determining
the final ranking (ties are broken using the standard deviation). PyraMiD-LSTM leads
the final ranking with a new state-of-the-art result and outperforms other methods for
CFS in all metrics.

We also tried regularization through dropout [28]. Following earlier work [29],
the dropout operator is applied only to non-recurrent connections (50% dropout on
fully connected layers and/or 20% on input layer). However, this did not improve
performance, but made the system slower.

4 Conclusion
Since 2011, GPU-trained max-pooling CNNs have dominated classification contests [30,
31, 32] and segmentation contests [12]. MD-LSTM, however, may pose a serious chal-
lenge to such CNNs, at least for segmentation tasks. Unlike CNNs, MD-LSTM has an
elegant recursive way of taking each pixel’s entire spatio-temporal context into account,

9

http://mrbrains13.isi.uu.nl/results.php
http://mrbrains13.isi.uu.nl/results.php


(a) T1 (b) IR (c) FLAIR

(d) T1 (pre-processed) (e) IR (pre-processed) (f) FLAIR (pre-processed)

(g) segmentation result from PyraMiD-LSTM

Figure 5: Slice 19 of the test image 1. (a)-(c) are examples of three scan methods used in the
MR brain dataset, and (d)-(f) show the corresponding images after our pre-processing procedure
(see pre-processing in Section ). Input (b) is omitted due to strong artifacts in the data — the
other datatypes are all used as input to the PyraMiD-LSTM. The segmentation result is shown in
(g).

10



in both images and videos. Previous MD-LSTM implementations, however, could
not exploit the parallelism of modern GPU hardware. This has changed through our
work presented here. Although our novel highly parallel PyraMiD-LSTM has already
achieved state-of-the-art segmentation results in challenging benchmarks, we feel we
have only scratched the surface of what will become possible with such PyraMiD-
LSTM and other MD-RNNs.

5 Acknowledgements
We would like to thank Klaus Greff and Alessandro Giusti for their valuable discus-
sions, and Jan Koutnik and Dan Ciresan for their useful feedback. We also thank
the ISBI NEATBrain15 organizers [14] and the ISBI 2012 organisers, in particular
Adriënne Mendrik and Ignacio Arganda-Carreras. Lastly we thank NVIDIA for gen-
erously providing us with hardware to perform our research. This research was funded
by the NASCENCE EU project (EU/FP7-ICT-317662).

References
[1] S. Hochreiter and J. Schmidhuber. “Long Short-Term Memory”. In: Neural Com-

putation 9.8 (1997). Based on TR FKI-207-95, TUM (1995), pp. 1735–1780.
[2] F. A. Gers, J. Schmidhuber, and F. Cummins. “Learning to Forget: Continual

Prediction with LSTM”. In: Proc. ICANN’99, Int. Conf. on Artificial Neural
Networks. Edinburgh, Scotland: IEE, London, 1999, pp. 850–855.

[3] A. Graves, M. Liwicki, S. Fernandez, R. Bertolami, H. Bunke, and J. Schmidhu-
ber. “A Novel Connectionist System for Improved Unconstrained Handwriting
Recognition”. In: IEEE Transactions on Pattern Analysis and Machine Intelli-
gence 31.5 (2009).

[4] H. Sak, O. Vinyals, G. Heigold, A. Senior, E. McDermott, R. Monga, and M.
Mao. “Sequence Discriminative Distributed Training of Long Short-Term Mem-
ory Recurrent Neural Networks”. In: Proc. Interspeech. 2014.

[5] H. Sak, A. Senior, and F. Beaufays. “Long Short-Term Memory Recurrent Neu-
ral Network Architectures for Large Scale Acoustic Modeling”. In: Proc. Inter-
speech. 2014.

[6] I. Sutskever, O. Vinyals, and Q. V. Le. Sequence to Sequence Learning with Neu-
ral Networks. Tech. rep. arXiv:1409.3215 [cs.CL]. NIPS’2014. Google, 2014.

[7] A. Graves, S. Fernández, and J. Schmidhuber. “Multi-dimensional Recurrent
Neural Networks”. In: ICANN (1). 2007, pp. 549–558.

[8] A. Graves and J. Schmidhuber. “Offline Handwriting Recognition with Multi-
dimensional Recurrent Neural Networks”. In: Advances in Neural Information
Processing Systems 21. Cambridge, MA: MIT Press, 2009, pp. 545–552.

[9] W. Byeon, T. M. Breuel, F. Raue, and M. Liwicki. “Scene Labeling With LSTM
Recurrent Neural Networks”. In: Computer Vision and Pattern Recognition (CVPR),
2015 IEEE Conference on. 2015.

11



[10] M. Kass, A. Witkin, and D. Terzopoulos. “Snakes: Active contour models”. En-
glish. In: International Journal of Computer Vision 1.4 (1988), pp. 321–331.
ISSN: 0920-5691.

[11] L. Wang, Y. Gao, F. Shi, G. Li, J. H. Gilmore, W. Lin, and D. Shen. “LINKS:
Learning-based multi-source IntegratioN frameworK for Segmentation of infant
brain images”. In: NeuroImage 108.0 (2015), pp. 160 –172. ISSN: 1053-8119.

[12] D. C. Ciresan, A. Giusti, L. M. Gambardella, and J. Schmidhuber. “Deep Neural
Networks Segment Neuronal Membranes in Electron Microscopy Images”. In:
Advances in Neural Information Processing Systems (NIPS). 2012, pp. 2852–
2860.

[13] A. Cardona, S. Saalfeld, S. Preibisch, B. Schmid, A. Cheng, J. Pulokas, P. Toman-
cak, and V. Hartenstein. “An integrated micro-and macroarchitectural analysis of
the Drosophila brain by computer-assisted serial section electron microscopy”.
In: PLoS biology 8.10 (2010), e1000502.

[14] A. M. Mendrik, K. L. Vincken, H. J. Kuijf, G. J. Biessels, and M. A. Viergever
(organizers). MRBrainS Challenge: Online Evaluation Framework for Brain Im-
age Segmentation in 3T MRI Scans, http://mrbrains13.isi.uu.nl.
2015.

[15] O. Weber, Y. S. Devir, A. M. Bronstein, M. M. Bronstein, and R. Kimmel. “Par-
allel algorithms for approximation of distance maps on parametric surfaces”. In:
ACM Transactions on Graphics (TOG) 27.4 (2008), p. 104.

[16] Segmentation of Neuronal Structures in EM Stacks Challenge. IEEE Interna-
tional Symposium on Biomedical Imaging (ISBI), http://tinyurl.com/d2fgh7g.
2012.

[17] S. M. Pizer, E. P. Amburn, J. D. Austin, R. Cromartie, A. Geselowitz, T. Greer,
B. T. H. Romeny, and J. B. Zimmerman. “Adaptive Histogram Equalization and
Its Variations”. In: Comput. Vision Graph. Image Process. 39.3 (Sept. 1987),
pp. 355–368. ISSN: 0734-189X.

[18] T. Tieleman and G. Hinton. “Lecture 6.5-rmsprop: Divide the gradient by a run-
ning average of its recent magnitude”. In: COURSERA: Neural Networks for
Machine Learning 4 (2012).

[19] Y. N. Dauphin, H. de Vries, J. Chung, and Y. Bengio. “RMSProp and equili-
brated adaptive learning rates for non-convex optimization”. In: arXiv preprint
arXiv:1502.04390 (2015).

[20] S. Hochreiter. Untersuchungen zu dynamischen neuronalen Netzen. Diploma
thesis, Institut für Informatik, Lehrstuhl Prof. Brauer, Technische Universität
München. Advisor: J. Schmidhuber. 1991.

[21] S. Chetlur, C. Woolley, P. Vandermersch, J. Cohen, J. Tran, B. Catanzaro, and E.
Shelhamer. “cuDNN: Efficient Primitives for Deep Learning”. In: CoRR abs/1410.0759
(2014).

[22] W. M. Rand. “Objective Criteria for the Evaluation of Clustering Methods”. In:
Journal of the American Statistical Association 66.336 (1971), pp. 846–850.

[23] V. Jain, B. Bollmann, M. Richardson, D. Berger, M. Helmstaedter, K. Briggman,
W. Denk, J. Bowden, J. Mendenhall, W. Abraham, K. Harris, N. Kasthuri, K.
Hayworth, R. Schalek, J. Tapia, J. Lichtman, and H. Seung. “Boundary Learning

12

http://mrbrains13.isi.uu.nl


by Optimization with Topological Constraints”. In: Computer Vision and Pattern
Recognition (CVPR), 2010 IEEE Conference on. 2010, pp. 2488–2495.

[24] T. Liu, C. Jones, M. Seyedhosseini, and T. Tasdizen. “A modular hierarchical
approach to 3D electron microscopy image segmentation”. In: Journal of Neu-
roscience Methods 226.0 (2014), pp. 88 –102. ISSN: 0165-0270.

[25] L. R. Dice. “Measures of the Amount of Ecologic Association Between Species”.
English. In: Ecology 26.3 (1945), pp. 297–302. ISSN: 00129658.

[26] D. Huttenlocher, G. Klanderman, and W. Rucklidge. “Comparing images using
the Hausdorff distance”. In: Pattern Analysis and Machine Intelligence, IEEE
Transactions on 15.9 (1993), pp. 850–863. ISSN: 0162-8828.

[27] K. O. Babalola, B. Patenaude, P. Aljabar, J. Schnabel, D. Kennedy, W. Crum,
S. Smith, T. Cootes, M. Jenkinson, and D. Rueckert. “An evaluation of four
automatic methods of segmenting the subcortical structures in the brain”. In:
NeuroImage 47.4 (2009), pp. 1435 –1447. ISSN: 1053-8119.

[28] N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever, and R. Salakhutdinov.
“Dropout: A Simple Way to Prevent Neural Networks from Overfitting”. In:
Journal of Machine Learning Research 15 (2014), pp. 1929–1958.

[29] W. Zaremba, I. Sutskever, and O. Vinyals. “Recurrent Neural Network Regular-
ization”. In: CoRR abs/1409.2329 (2014).

[30] D. C. Ciresan, U. Meier, J. Masci, and J. Schmidhuber. “A Committee of Neural
Networks for Traffic Sign Classification”. In: International Joint Conference on
Neural Networks (IJCNN). 2011, pp. 1918–1921.

[31] A. Krizhevsky, I Sutskever, and G. E Hinton. “ImageNet Classification with
Deep Convolutional Neural Networks”. In: NIPS. 2012, p. 4.

[32] M. D. Zeiler and R. Fergus. Visualizing and Understanding Convolutional Net-
works. Tech. rep. arXiv:1311.2901 [cs.CV]. NYU, 2013.

13


	1 Introduction
	2 Method
	2.1 Pyramidal Connection Topology
	2.2 PyraMiD-LSTM

	3 Experiments
	3.1 Neuronal Membrane Segmentation
	3.2 MR Brain Segmentation

	4 Conclusion
	5 Acknowledgements

