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Abstract. This work presents an automatic brain MRI segmentation
method which can classify brain voxels into one of three main tissue
types: gray matter (GM), white matter (WM) and Cerebro-spinal fluid
(CSF). Intensity-model based classification of MR images has proven
problematic. The statistical approach does not carry any spatial, textu-
ral and neighborhood information in it. We propose to use a computa-
tionally fast and novel feature-set to facilitate voxel wise classification
based on regional intensity, texture, spatial location of voxels in addi-
tion to posterior probability estimates. Information available through
T1-weighted (T1), T1-weighted inversion recovery (IR) and T2-weighted
FLAIR (FLAIR) MRI sequences was also leveraged. An aggregate over-
lap of 90.21% for all intracranial structures was reported between the
automatic classification and available expert annotation as measured by
the DICE coefficient.

Keywords: Multi Sequence-MRI, Brain Segmentation, Tissue-Fluid class-
fication

1 Introduction

Magnetic Resonance Imaging (MRI) has become important in the diagnosis and
monitoring of brain anatomical structures and has emerged as a key supportive
therapeutic outcome measure in clinical diagnosis and biomedical research [15].
In clinical and medical studies on brain anatomical structures, a successful parti-
tion of images into Gray Matter (GM), White Matter (WM) and Cerebrospinal
Fluid (CSF) is often an important first step. This work presents an automatic
brain MRI segmentation method which can classify brain voxels into one of three
main tissue types.

Volumetric analysis of different parts of the brain are useful in assessing
the progress or remission of various other diseases, such as Alzheimers disease,
epilepsy, multiple sclerosis, and schizophrenia. In neurodegeneration studies of
schizophrenic patients, the volume changes of gray matter in thalamus, frontal
and temporal lobes as well as CSF in ventricles are of relevance [9] [13]. It is



2

also of considerable interest to study regional volumes of GM and WM across
different developmental stages of the human brain [5]. Lesion segmentation is
also another important application in clinical studies [16].

Amongst majority of biomedical research community, the image segmenta-
tion is still supervised by professional experts on a slice-by-slice basis. This
process is not only labor intensive but also introduces large intra- and inter-
observer variability on account of partial volume effect, variability of scanning
procedures and human factors. Further, with advancement of technology, mul-
tiple MRI modalities are available viz.T1-weighted (T1), T1-weighted inversion
recovery (IR) and T2-weighted FLAIR (FLAIR). For a human expert it may
not be practicable to observe multiple modalities simultaneous and draw their
inferences. Therefore, in order to reduce the subjectivity in analysis and to make
use of information available through multiple modalities it is highly desirable to
apply automatic image analysis methods for biomedical studies involving large
image data.

This work presents an automatic brain MRI segmentation method which
can classify brain voxels into one of three main tissue types: Gray matter (GM),
White matter (WM), and Cerebro-spinal fluid (CSF). Gaussian distributions are
used to model voxel intensities from multi-sequence MRI scan (T1, IR, FLAIR).
Since statistical models do not take into account spatial information, we propose
to use neighborhood intensity cues, texture cues and positional information along
with cues obtained from statistical modeling to classify the voxels using support
vector machines. This work was done as part of a contest titled MR Brain Image
Segmentation 20131 to be held during 16th International Conference on Medical
Image Computing and Computer Assisted Intervention (MICCAI-2013).

The contest dataset consists of 20 fully annotated multi-sequence (T1, IR
and FLAIR) 3T MRI brain scans. These scans have been acquired at the UMC
Utrecht (The Netherlands). All scans are bias corrected, and the thick-slice scans
are registered. Each thick sliced sequence contains 48 image slices, each of size
240X240 voxels. Out of the 20 scans, 5 scans were provided with annotations to
be used as training set. 12 scans were provided without annotations to be used as
test set. Remaining 3 scans will be used for onsite evaluation of the algorithms.
Further details of the dataset can be found on the contest website1.

The organization of the rest of the paper is as follows. A concise literature
review is presented in Section 2. Following that, Section 3 describes in detail the
procedure that was used to solve the problem at hand. Results were presented
in Section 4. Section 5 concludes the paper and gives direction for future work.

2 Literature Review

In recent years, researchers have proposed various approaches for brain MRI clas-
sification. A wide range of statistical methods are proposed. These approaches
assume that mixed voxel intensities reflect distinct tissue groups, and individual

1 http://mrbrains13.isi.uu.nl/
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voxels are assigned to different groups through modeling the intensity histogram
as a mixture of probability distributions. Ashburner et al. [1] have proposed a
modified version of the mixture model algorithm for analyzing spatial distribu-
tions of tissue groups. Rajapakse et al. [17] have proposed a Bayesian maximum
a posteriori (MAP) model for image segmentation by incorporating Markov ran-
dom fields (MRFs) as spatial priors for tissue distributions. Expectation Maxi-
mization (EM) is yet another popular approach used by various medical imaging
researchers in varied domains. Zhang et al. [19] improved EM by using hidden
Markov Random Field (HMRF) model in which state sequence is estimated
through observations. The advantage of the HMRF model is that the spatial
information is encoded through the influences of neighboring sites.

Yet another class of approaches includes clustering. Fuzzy-based approaches
generalize the K-means algorithm to allow for soft segmentations such that each
voxel can be assigned to more than one class of tissue [6][12]. On the other hand,
the adaptive mean shift methods enable the integration of intensity and spatial
features [14][7]. Glass et al. have used the Kohonen Map and multi-layered back-
propagation neural networks for segmentation in inversion recovery (IR) images
[4].

In addition to these, some miscellaneous approaches have also been pro-
posed. Li et al. [10] have proposed an interactively guided method utilizing
dual-front active contours which minimizes image-based energies. In another
of their work Li et al. have combined the watershed transform and region-based
level set method [11]. Tian and Fan [18], have proposed a feature set which uses
pixel intensity of the voxel and of its spatial neighbors. Classification of voxels
is done with self-organizing map (SOM) neural network.

In such a well-established research area, there is a tremendous need for fair
comparison of these methods with respect to accuracy and robustness. Many
of the previous algorithms make use of publicly available databases like the
Alzheimers Disease Neuroimaging Initiative (ADNI) and the Internet Brain Seg-
mentation Repository (IBSR). However, these datasets either lack full manual
segmentations (ADNI) or provide low-field (1.5T) single sequence (T1-weighted)
MRI data (IBSR). Most of the algorithms have been tested on privately held
datasets. The aim of this challenge is to compare algorithms for segmentation
of gray matter, white matter and cerebrospinal fluid on a common dataset con-
sisting of 3T MRI multi-sequence scans of the brain.

3 Methodology

The main stages of the proposed segmentation scheme are : 1) Preprocessing, 2)
Statistical Modeling, 3) Feature Extraction, 4) Supervised Classification and 5)
Post Processing. Figure 1 shows the overview diagram of the proposed segmen-
tation scheme.

3.1 Preprocessing

Steps involved in preprocessing are : 1) Intensity normalization, 2) Region of
Interest (ROI) selection.
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Fig. 1: Overview diagram demonstrating proposed segmentation scheme

Intensity normalization The MRI intensity scale has no absolute, physical
meaning as the image values and contrast are dependent on the pulse sequence,
and other variable scanner and post-processing parameters. Thus intensity values
in each of the sequences (T1, IR and FLAIR) were linearly mapped to a standard
8-bit scale (0-255) using the Eq. 1.

IN = (I −Min(I))× 255

Max(I)−Min(I)
(1)

where, I is the original image, Max(I) and Min(I) denote the maximum and
minimum intensities of I respectively and IN is the intensity normalized image.

Region of Interest (ROI) selection As explained in Section 1, for each
patient there are three thick sliced sequences viz. T1, IR and FLAIR. Each thick
sliced sequence contains 48 image slices, each of size 240X240 voxels. Since, the
proposed segmentation scheme is voxel based, it presents a huge amount of data
to be processed. Hence there is a need to select a Region of Interest (ROI). An
edge map of each slice in a given volume in T1 sequence was computed using
Canny Edge Detection [3] as shown in Fig.2a. N-Radially outward directed lines
were constructed from the center of the slice as shown in Fig. 2b. Each line was
drawn using Eq. 3.

θ =
2πk

N
(2)(

Rx

Ry

)
=

(
Cx

Cy

)
+ r

(
cos θ
sin θ

)
(3)

Where N = 60, k ∈ {0 to N − 1}, r = 1 to 115 and Cx, Cy denote the center of
image slice.

Intersection points of these lines with the outermost edge of the edge map
were computed as shown in Fig. 2c. A closed cubic spline was fitted through
these computed intersection points as shown in Fig. 2d. Area enclosed in this
closed cubic spline was used as ROI. T1, IR and FLAIR scans are aligned to
eliminate the influence of different registrations. Hence, the ROI obtained from
volumes of T1 sequence can be used for IR and FLAIR sequences as well.
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(a) (b)

(c) (d)

Fig. 2: Process of selection of ROI

3.2 Statistical Modeling

MRI provides good contrast between the different soft tissues and fluids in the
brain. Scans obtained with different MRI modalities (T1, IR, FLAIR) help in
analysis of different parts of the brain. For example, using T1 scan, the CSF
appears darker than WM and GM. CSF is bright, but fat (and thus white mat-
ter) is darker in IR. The FLAIR modality suppresses CSF and white matter is
highlighted. All these observations can be verified from histogram plots for each
of the labels (CSF, GM, WM) for each of the modalities (see Fig. 3).

Let,

l ∈ {CSF, GM, WM} at a given voxel

s ∈ {T1, IR, FLAIR} sequence

X = Intensity tuple at a given voxel representing intensities of three sequences
viz. T1, IR, FLAIR

Xs = Intensity at a given voxel for a sequence s.

Intensity distribution of each label (CSF, GM, WM) in each of the sequences
can be approximated as a Gaussian distribution with mean µ and variance σ2.
Fig. 3 shows the histogram of all the three region viz. CSF, GM, WM of an
image volume in T1, IR and FLAIR sequences. Let Θs,l = {µs,l, σ

2
s,l} denote

the mean Gaussian parameters for all the volumes in the given training dataset.
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(a) (b) (c)

Fig. 3: Histograms of CSF (red), GM (green), and WM (blue) along with the esti-
mated Gaussian distributions for CSF (cyan), GM (magenta), and WM (yellow)
for (a) T1 weighted, (b) T1 weighted Inversion Recovery and (c) T2 weighted
FLAIR MR image sequences.

Hence underlying likelihood of each sequence were modeled as three independent
Gaussian distributions.

Gs,l(Xs) =
1

σs,l

√
2π

exp

[
−(Xs − µs,l)

2

2σ2
s,l

]
(4)

A stationary prior probability distribution on label class was used. This was
assigned as the fraction of occurrence of label l in the ground truth and is
denoted by p(l). Probability density of voxel intensity conditioned on a given
label for a sequence is defined as

ps(Xs|l) = Gs,l(Xs) ∀s, l (5)

We assume statistical independence of the voxel intensities in each of the se-
quences (T1, IR, FLAIR). We may then write the combined probability density
for all the sequences as,

p(X|l) =
∏
s

ps(Xs|l) ∀l (6)

Posterior probability for the labels, given observed intensity data was obtained
using Bayes’ rule as follows,

p(l|X) =
p(X|l).p(l)

p(X)
∀l (7)

where P(X) is an unimportant normalizing constant and hence was ignored.
Posterior probability for each label was obtained combining Eq.4, 5, 6 and 7.

p(l|X) = p(l).
∏
s

Gs,l(Xs) ∀s, l (8)
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3.3 Feature Extraction

Empirical results indicate that label based (CSF, GM, WM) intensity distri-
butions in image volume sequences(T1, IR, FLAIR) exhibit a partial Gaussian
shape but were modeled exactly as Gaussian distributions in the Section 3.2. The
statistical approach also does not carry any spatial, textural and neighborhood
information in it. Hence it presents a need for a feature set through which an
accurate and robust segmentation can be achieved.

A novel feature set was developed to facilitate voxel wise classification based
on regional intensity, texture, spatial location of voxels in addition to posterior
probability estimates as developed in Section 3.2. Following features were com-
puted for each of the voxel in ROI :

1. Intensity cues (3)
– Voxel Intensity in T1, IR, FLAIR

2. Probability Model based cues (6)
– Voxel posterior probability of CSF, GM, WM (Section 3.2);
– Mean Far Neighborhood2 posterior probability of CSF, GM, WM

3. Primitive Texture cues (12)
– Mean Far Neighborhood Intensity in T1, IR, FLAIR;
– Number of Edges in Near Neighborhood3 in T1, IR, FLAIR;
– Number of Edges in Far Neighborhood in T1, IR, FLAIR;
– Power Spectral Density in Far Neighborhood in T1, IR, FLAIR

4. Localization cues (3)
– Voxel Location and Slice Number.

To evaluate the mean of far neighborhood efficiently, mean filtering was em-
ployed in which each voxel value in an image slice is replaced with the mean
value of its neighbors. This was achieved using convolution of the image slice
with a 7X7 square kernel (k7).

k7 = (1/49)× J7

where J7 is 7x7 ones matrix.

Imean = k7 ∗ IN

where ∗ stands for convolution and IN is the intensity normalized image.
An edge map was computed using canny edge detection as discussed in Sec-

tion 3.1. Number of edges in the near neighborhood were computed by convo-
lution of edge map with a 3X3 square kernel J3, where J3 is 3x3 ones matrix.
Hence, each voxel value was replaced with the number of edges in its near neigh-
borhood.

Ined = J3 ∗ Ied
2 Far Neighborhood implies neighborhood of 7X7
3 Near Neighborhood implies neighborhood of 3X3
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where ∗ stands for convolution and Ied is the edge map image.
The Power Spectral Density in the Far neighborhood is essentially mean of

squared neighborhood values. It was computed by taking the point-wise product
of the normalized image slice with itself followed by mean filtering which was
achieved by convolution of the obtained point-wise product with a 7X7 square
kernel (k7) as depicted in following equation.

IPSD = k7 ∗ (IN · IN )

It was observed that initial slices of MR Image data consist of higher number
of anatomical structures of brain while they attain regularity over the higher slice
numbers and are constituted mainly by CSF, GM and WM. For the available
thick slice dataset containing 48 slice MRI data three logical partitions based on
the observed anatomy of the brain were made. Partition 1 contained data from
slice number 1 to 14, partition 2 contained data from slice number 14 to 24 and
partition 3 contained data from slice number 25 to 48. Above described feature
set was computed separately for each of the partition. Thus in all 24 features
were extracted for each voxel in ROI.

3.4 Classification

The feature set described in Section 3.3 was used for classification of voxels into
one of the four class viz. CSF, GM, WM and Background. Supervised classi-
fication was performed using Multi Category Support Vector Machine. Since
features were extracted for each voxel, the number of samples were prohibitively
large to enable SVM to learn a model. Random sampling of the data provided
a simple solution to this problem. Separate classifiers were learned for each of
the three logical partitions described in Section 3.3 using the computed training
feature data for each partition.

3.5 Post Processing

The resultant voxel wise classification in label masks contains small noisy blobs.
Connected components analysis (CCA) labels the blobs in a label image, as per
its connectivity. The labels thus formed were used to iterate through each of the
blob to extract the blob area. Isolated blobs with very small areas were removed.

4 Results and Discussion

The Gaussian intensity models treat each voxel independently and thus suffer
from an intrinsic limitation that such models do not take into account spatial
information. This section visually demonstrates the limitation of using only an
intensity based model. Further it shows qualitatively the advantage of including
spatial features as proposed in Section 3.3 in addition to the features derived
from intensity model. Finally we also present quantitative evaluation of our
segmentation using metrics as proposed by Babalola et al. [2].
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It can be observed from the ground truth (Fig. 4b) that in partition 1 there
are regions in brain scan which cannot be classified only on the basis of statistical
approach. Such regions also require edge information, textural cues, and spatial
information for accurate classification. It is evident from the Fig. 4b and Fig. 4d
that ground truth and segmentation result from our algorithm are comparable.
Due to similar intensity composition of the skull and white matter, parts of the
skull were accidentally classified as white matter when using only the statistical
model. However, such misclassifications are eliminated by use of proposed feature
set. This can be observed in Fig. 4.

(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

Fig. 4: Comparison between segmentation results of Partition 1 ((a) to (d)), Par-
tition 2 ((e) to (h)) and Partition 3 ((i) to (l)) obtained from statistical approach
and our feature set based approach. T1-weighted MRI scan slice column 1 ((a),
(e), (i)); Ground Truth column 2 ((b), (f), (j)); Statistical approach based re-
sult column 3 ((c), (g), (k)); Our result column 4 ((d), (h), (l)). The labels are
marked as: CSF (Cyan), GM (Yellow) and WM (Dark Red)

The classification scheme described in Section 3 was applied on the contest
testing set which consisted of 12 MRI brain scans. The automatic segmentation
results were compared to manual annotated scans. For each tissue type (gray
matter, white matter and cerebrospinal fluid), the Dice coefficient (DC) , the
Modified Hausdorff distance (MHD) measure and absolute brain (gray matter
+ white matter) volume difference (ABVD) were calculated. Dice coefficient
is a measure of volume overlap between the manually annotated results and
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automatic results.

DC =
2|A(S)

⋂
A(G)|

|A(S)|+ |A(G)|
× 100 (9)

Hausdorff distance is a boundary based measure. It measures the degree of sepa-
ration of the manually marked contour and automatically derived contour. Mod-
ified Hausdorff Distance (MHD) is defined as the 95th-percentile Hausdorff dis-
tance(HD).

HD = maxw [minx||Cw − Cx||] (Cw ∈ S,Cx ∈ G) (10)

ABVD =
|VS − VG|

VG
× 100 (11)

Where C is the total number of pixels in the image and |x| represents cardinal-
ity of any set x. S and G represent segmentation result and ground truth. A(S)
and A(G) are the areas of the close boundary of segmentation results and man-
ual delineation respectively. For boundary based measures S and G are closed
boundaries of segmentation results and manual delineations. V is defined as the
number of absolute brain (gray matter + white matter) labeled voxels multiplied
by the voxel dimensions.

Table 1: Overall Dice Coefficient(%), Modified Hausdorff Distance (mm) and
Absolute Brain Volume Difference (%) for the testing set.

Structure Dice (%) Mod. HD (mm) Abs.Brain Vol-
ume Diff. (%)

Gray matter 74.22 ± 4.60 6.80 ± 2.55 8.59 ± 6.19
White matter 78.72 ± 6.40 6.35 ± 3.45 13.77 ± 13.76
Cerebrospinal fluid 70.23 ± 5.32 7.76 ± 2.44 19.65 ± 13.87
Brain 89.46 ± 3.31 8.63 ± 3.05 5.91 ± 5.02
All intracranial structures 90.21 ± 3.81 20.58 ± 3.67 6.57 ± 5.38

Table 1 shows the results summarized by the organizers using the above
mentioned metrics. It can be noted that there was an overlap of 74.22% between
the manually marked and automatic results for gray matter as measured with
Dice coefficient. Similarly, an overlap of 78.72% and 70.23% was reported for
white matter and cerebrospinal fluid respectively. An aggregate overlap of 90.21%
of all intracranial structures was reported. Since the previous methods have
used different data-sets and often privately held data-sets, it was not possible
to compare our results with those results. The results from other competitors
of this contest were not available as of writing of this paper. The comparison
results of this algorithm with other competitors will be available on the contest
site after the onsite contest.
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The prototype for the proposed method was built using MATLAB on Win-
dows 7 on an Intel i5 machine with 4GB RAM. Windows version of SVM Light
multi-category [8] implementation was used. Approximately 5 minutes are re-
quired on the above described machine to process each volume.

5 Conclusion and Future Work

In this paper we proposed to use information from multiple MRI sequences to au-
tomatically classify brain voxels into one of three main tissue types: gray matter
(GM), white matter (WM), and Cerebro-spinal fluid (CSF). Since the intensity
model assumes voxel independence, it fails to capture the spatial information.
To incorporate the spatial information, we proposed to make use of regional in-
tensity, texture, and location cues of voxels in addition to posterior probability
estimates. As of now, the system does not require user interaction and an ag-
gregate overlap of 90.21% for all intracranial structures was achieved between
the automatic classification and available expert annotation as measured by the
Dice coefficient.

Use of 3-D neighborhood may prove effective in further boosting the clas-
sification rates. In statistical models such as the hidden Markov model spatial
information is encoded in the model. Use of such a model can be a subject of
future research. Further, with advent of faster GPUs it may be possible to reduce
computational time for our system. Parallel deployment of the algorithm may be
required for processing massive amount of data that is needed to be processed in
a typical clinical setting. A multi-site, multi-discipline collaborative study may
be a vehicle to develop practical computerized analysis tools to study the brain
and to understand and combat various brain ailments.
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