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Fully convolutional deep neural networks have been asserted1

to be fast and precise frameworks with great potential in image2

segmentation. One of the major challenges in utilizing such3

networks raises when data is unbalanced, which is common in4

many medical imaging applications such as lesion segmentation5

where lesion class voxels are often much lower in numbers than6

non-lesion voxels. A trained network with unbalanced data may7

make predictions with high precision and low recall (sensitivity),8

being severely biased towards the non-lesion class which is par-9

ticularly undesired in medical applications where false negatives10

are actually more important than false positives. Various methods11

have been proposed to address this problem including two step12

training, sample re-weighting, balanced sampling, and similarity13

loss functions. In this paper we propose a framework based14

on an asymmetric similarity loss function to mitigate the issue15

of data imbalance to achieve much better trade-off between16

precision and recall in training fully convolutional deep networks.17

To this end, we developed a patch-wise 3D densely connected18

network with an asymmetric loss function, where we used19

large overlapping image patches for intrinsic and extrinsic data20

augmentation, a patch selection algorithm, and a patch prediction21

fusion strategy based on B-spline weighted soft voting to take22

into account the uncertainty of prediction in patch borders. We23

applied this method to multiple sclerosis lesion segmentation24

based on the MSSEG 2016 and ISBI 2015 challenges, where25

we achieved average Dice similarity coefficient of 69.8% and26

65.74%, respectively, using our proposed patch-wise 3D densely27

connected network. Our results show marked improvement over28

the results reported in the literature and those of an approach29

based on 3D U-Net in these challenges. Significant improvement30

in F1 and F2 scores and the area under the precision-recall curve31

was achieved in test using the asymmetric similarity loss layer32

and our 3D patch prediction fusion method. The asymmetric33

similarity loss function based on Fβ scores generalizes the Dice34

similarity coefficient and can be effectively used with the patch-35

wise strategy developed here to train fully convolutional deep36

neural networks for highly unbalanced image segmentation.37

Index Terms—Lesion segmentation, Asymmetric loss function,38

Convolutional neural network, DenseNet, Patch prediction fusion.39
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I. INTRODUCTION 41

CONVOLUTIONAL neural networks have shown promis- 42

ing results in a wide range of applications including im- 43

age segmentation. Recent medical image processing literature 44

shows significant progress towards automatic segmentation of 45

brain lesions [1], [2], tumors [3], [4], [5], and neuroanatomy 46

[6], [7], [8] using 2D networks [3], [6], [9], and more recently 47

using 3D network architectures [8], [2]. Fully convolutional 48

networks (FCNs) with multi-scale skip connections, in partic- 49

ular, have shown great performance [9], [10], [11]. 50

In this work, we considered automatic brain lesion segmen- 51

tation in Multiple sclerosis (MS). MS is the most common 52

disabling neurologic autoimmune disease resulting from recur- 53

rent attacks of inflammation in the central nervous system [12], 54

[13]. Across the extensive literature for automated MS lesion 55

segmentation, there are methods that try to alleviate the data 56

imbalance issue by equal selection of training samples from 57

each class [3], [14], whereas others propose using more persis- 58

tent loss functions [1], [11], [15], both of which we combine 59

together as a rigorous solution. As our first contribution in this 60

work to deal with significantly unbalanced data, we investigate 61

and compare the generality and performance of our proposed 62

asymmetric loss function based on the Fβ scores with the Dice 63

similarity loss function recently proposed for medical image 64

segmentation using FCNs [11]. 65

In addition, we further diminish the problem of data im- 66

balance by using patches that lead to relatively higher ratio of 67

lesion versus non-lesion samples. Overlapping patches provide 68

intrinsic data augmentation, make a better balance in data for 69

training, and make the network adaptable for any size inputs 70

with efficient memory usage in both test and training. We 71

propose a patch prediction fusion strategy to take into account 72

the prediction uncertainty in patch borders. In what follows, 73

we review the state-of-the-art in MS lesion segmentation and 74

the related work that motivated this study. Then we show 75

two network architectures with our proposed loss function 76

that generate accurate lesion segmentation compared to the 77

literature according to several performance metrics. 78

II. RELATED WORK 79

Many novel and genuine algorithms, methods, and models 80

have been continuously developed and improved over the past 81
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years on MS lesion segmentation. As the number of these82

methods grew, so did the desire for higher precision and83

more general solutions. In spite of the fact that there are lots84

of fully automated segmentation algorithms, the accuracy of85

these methods are not yet in an acceptable range, highlighting86

the difficulty of the problem. Therefore, lesion segmentation87

remains an active and important area of research.88

The state-of-the-art MS lesion segmentation methods mostly89

use aggregations of skull stripping, bias correction, image reg-90

istration, atlases, intensity feature information, data augmenta-91

tion, and image priors or masks in training. The most recently92

proposed deep learning techniques for lesion segmentation93

include recurrent neural networks (RNN) with DropConnect94

[16], cascaded convolutional neural networks [17], [18], deep95

convolutional encoder networks [1], and independent image96

modality convolution pipelines [19]. There has also been other97

more classic supervised methods such as decision random98

forests [20], [21], non-local means [22], [23], and combined99

inference from patient and healthy populations [24]. One100

of the most recent techniques for the application of lesion101

segmentation, proposes the use of generalized dice overlap102

as a loss function [25] which assigns weights to different103

segmentation labels based on their quantity and volume in104

the training data. The other recent technique merges the two105

popular architectures of Unet and DenseNet while forming a106

hybrid structure [26] for liver and tumor segmentation.107

In this study, we propose an asymmetric similarity loss func-108

tion based on Fβ scores to train deep fully convolutional neural109

networks using two network architectures: the U-net [15] due110

to its fast speed attribute [27] and DenseNet because of its111

deep and powerful infrastructure [28], both in a 3D manner.112

This work extends our preliminary report of using Tversky113

index [29] as a loss function for 3D U-net [30]. To the best of114

our knowledge this is the first study proposing a similarity loss115

function for precision and recall adjustments in training 3D116

deep fully convolutional networks for highly unbalanced data.117

Within our approach, we investigate the effects of asymmetry118

in the similarity loss function on whole-size as well as patch-119

size images with two different deep networks. In addition,120

we incorporate a soft weighted voting method, calculating121

weighted average of probabilities predicted by many aug-122

mented overlapping patches in an image. Our results show123

that this significantly improved lesion segmentation accuracy.124

Based on our experimental results, we strongly recommend the125

use of precision-recall balancing properties of asymmetric loss126

functions as a way to approach both balanced and unbalanced127

data in medical image segmentation where precision and128

recall may not have equal importance. We also propose a 3D129

patch-wise densely connected network with large overlapping130

patches and a patch prediction fusion method for best results.131

III. MATERIALS AND METHODS132

A. Network Architecture133

We designed and evaluated two fully convolutional neural134

networks with two different network architectures: 1) a 3D135

fully convolutional network [31], [32] based on the U-net136

architecture [15], and 2) a 3D densely connected network [28]137

based on the Dense-Net architecture [33]. To this end, we 138

develop a 3D U-net and a 3D patch-wise Dense-Net while 139

introducing an asymmetric loss layer based on Fβ scores. The 140

details of the network architectures are described next and we 141

follow with the loss function formulation, and our proposed 142

3D patch prediction fusion method for the patch-wise network. 143

1) 3D U-net 144

We propose a 3D U-net with an asymmetric similarity loss 145

layer [30]. This U-net style architecture is shown in Figure 1. 146

It consists of a contracting and an expanding path (to the 147

right and left, respectively). High-resolution features in the 148

contracting path are concatenated with upsampled versions of 149

global low-resolution features in the expanding path to help 150

the network learn both local and global information. In the 151

contracting path, padded 3× 3× 3 convolutions are followed 152

by ReLU non-linear layers. 2×2×2 max pooling layers with 153

stride 2 are applied after every two convolutional layers. The 154

number of features is doubled after each downsampling by the 155

max pooling layers. The expanding path contains 2 × 2 × 2 156

transposed convolution layers after every two convolutional 157

layers, and the resulting feature map is concatenated to the 158

corresponding feature map from the contracting path. At the 159

final layer a 1× 1× 1 convolution with softmax activation is 160

used to reach the feature map with depth of two, equal to the 161

number of lesion and non-lesion classes. 162

2) 3D Patch-Wise Dense-Net 163

We propose a 3D patch-wise Dense-Net based on 3D 164

DenseSeg [33] with overlapping patches, a new asymmetric 165

similarity loss layer and a patch prediction fusion strategy. 166

Figure 2 shows the schematic architecture of the 3D patch- 167

wise Dense-Net. This Dense-Net style architecture consists of 168

three initial 3 × 3 × 3 convolutional layers followed by five 169

dense blocks with a growth rate of 12. Growth rate refers 170

to the increase amount in the number of feature maps after 171

each layer in a dense block. In each dense block there are 172

four 3× 3× 3 convolutional layers preceding with 1× 1× 1 173

convolutional layers referred to as bottlenecks [28], which 174

have the purpose of reducing the number of input feature maps. 175

Skip connections are made between all layers of each dense 176

block. Aside from the last dense block, others are followed 177

by a 1 × 1 × 1 convolutional layer and a max pooling layer 178

which are named transition blocks. Down sampling of stride 179

two occurs in each transition block to reduce the feature 180

map dimensionality for computational efficiency. Each of the 181

convolutional layers is followed by batch normalization and 182

ReLU activation layers. Dropout rate of 0.2 is only applied 183

after 3 × 3 × 3 convolutional layers within dense blocks. At 184

the final layer a 1 × 1 × 1 convolution with sigmoid output 185

is used to reach the feature map with depth of one (lesion or 186

non-lesion class). 187

Prior to proceeding to the main classifier, results of all dense 188

blocks are upsampled using deconvolutional layers, using 189

transpose matrices of convolutions. Afterwards, the results are 190

concatenated and passed through the main classifier to calcu- 191

late the probability map of the input patch. In the proposed 192

architecture, fully convolutional layers are used instead of fully 193

connected layers [34] to achieve much faster testing time. 194

This architecture segments large 3D image patches. Therefore, 195



3

conv 3 3× ×3, ReLU

max pool 2 2× ×2

conv transpose 2 2× ×2

concatenate

conv 1×1×1, softmax

contracting

expanding

Figure 1. The 3D U-net style architecture with full-size images as inputs and skip connections between a contracting path and an expanding path.

Figure 2. The 3D patch-wise Dense-Net style architecture with 64×64×64 five channel input patches, consisting of five dense blocks and four convolutional
layers with bottlenecks within each block. Overlapping patches of a full size image are used as inputs to this network for training and testing.

to segment any size input image, overlapping large patches196

(typically of size 64× 64× 64 or 128× 128× 128) extracted197

from the image are used as input to the network. These patches198

are augmented and their predictions are fused to provide final199

segmentation of a full-size input image. The loss layer, patch200

augmentation and patch prediction fusion, and the details of201

training are discussed in the sections that follow.202

B. Asymmetric Similarity Loss Function203

The output layers in our two networks consist of 1 plane.204

There is one plane for MS Lesion class. Lesion voxels are205

labeled as 1 and non-lesion voxels are labeld as zero. We206

applied sigmoid on each voxel in the last layer to form the207

last feature map. Let P and G be the set of predicted and208

ground truth binary labels, respectively. The Dice similarity209

coefficient D between P and G is defined as:210

D(P,G) =
2|PG|
|P |+ |G|

(1)

Loss functions based on the Dice similarity coefficient have211

been proposed as alternatives to cross entropy to improve212

training 3D U-Net and other network architectures [11], [25]; 213

however D, as the harmonic mean of precision and recall, 214

weighs false positives (FPs) and false negatives (FNs) equally. 215

It is a symmetric similarity loss function. To make a better 216

adjustment of the weights of FPs and FNs (and achieve 217

a better balance between precision and recall) in training 218

fully convolutional deep networks for highly unbalanced data, 219

where detecting small number of voxels in a class is crucial, 220

we propose an asymmetric similarity loss function based on 221

the Fβ scores which is defined as: 222

Fβ = (1 + β2)
precision× recall

β2 × precision+ recall
(2)

Equation (2) can be written as: 223

F (P,G;β) =
(1 + β2)|PG|

(1 + β2)|PG|+ β2|G \ P |+ |P \G|
(3)

where |P \G| is the relative complement of G on P . To define
the Fβ loss function we use the following formulation:

Fβ =
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224

(1 + β2)
∑N
i=1 pigi

(1 + β2)
∑N
i=1 pigi + β2

∑N
i=1(1− pi)gi +

∑N
i=1 pi(1− gi)

(4)

where in the output of the sigmoid layer, the pi is the
probability of voxel i be a lesion and 1−pi is the probability of
voxel i be a non-lesion. Additionally, the ground truth training
label gi is 1 for a lesion voxel and 0 for a non-lesion voxel.
The gradient of the Fβ in Equation (4) with respect to P is
defined as ∇Fβ = [

∂Fβ
∂p1

,
∂Fβ
∂p2

, ...,
∂Fβ
∂pN

] where each element of
gradient vector can be calculated as:

∂Fβ
∂pj

=

225

(1 + β2)gj(β
2 ∑N

i=1(1− pi)gi +
∑N
i=1 pi(1− gi))

((1 + β2)
∑N
i=1 pigi + β2

∑N
i=1(1− pi)gi +

∑N
i=1 pi(1− gi))2

(5)
Considering this formulation we do not need to use weights to226

balance the training data. Also by adjusting the hyperparameter227

β we can control the trade-off between precision and recall228

(FPs and FNs). It is notable that the Fβ index generalizes the229

Dice coefficient and the Tanimoto coefficient (as known as230

Jaccard index). In the case of β = 1 the Fβ index simplifies231

to be the Dice similarity coefficient (F1). Larger β weighs232

recall higher than precision (by placing more emphasis on233

false negatives). We hypothesize that using higher β in our234

asymmetric similarity loss function helps us shift the emphasis235

to decrease FNs and boost recall, therefore achieve better236

performance in terms of precision-recall trade-off.237

C. 3D Patch Prediction Fusion238

To use our 3D patch-wise Dense-Net architecture to segment239

a full-size input image (of any size), overlapping large patches240

(of size 64 × 64 × 64 or 128 × 128 × 128) are taken from241

the image and fed into the network. In both training and242

testing, patches are augmented, fed into the network, and their243

predictions are fused in a procedure that is described in this244

section. A network with smaller input patch size uses less245

memory. Therefore, to fit the 128 × 128 × 128 size patches246

into the memory we used an extra 2×2×2 convolution layer247

with stride 2 at the very beginning of our architecture to reduce248

the image size.249

The amount of intersection area (overlap) between patches is250

adjustable. If we were to use 75% overlaps, the prediction time251

would be roughly an hour per 3D image. However, to keep the252

prediction time close to 5 minutes per image, we used 50%253

overlaps (stride of 1/2 of the patch size) on patch windows.254

Therefore, given the input image sizes of 128 × 224 × 256,255

the algorithm produces 5 × 8 × 9 patches per augmentation.256

There are four augmentations, the original image, and the three257

180 degree rotations for each plane. Consequently, our model258

performs 1,440 patch predictions per 3D image (of the above-259

mentioned size) and 32 predictions per voxel.260

The predictions from overlapping patches are fused to261

form the segmentation of the full-size image. In case of no262

overlap and no patch augmentation, each voxel on the original263

image has one predicted value, therefore predictions from264

tiled patches can just be tiled to produce the original image265

No Overlap 50% Overlap

Figure 3. Patch selection of the fusion method compared to the patch tiling
method. The predictions are based on the DenseNet model with β = 1.5.
Voxels near patch borders get relatively lower accuracy predictions when a
tiling approach is used, while for the fusion approach voxels near the border of
one patch will be at the center of another patch resulting in a higher accuracy.
The differences of predictions are shown with red circles.

segmentation. However, this does not lead to the best results 266

due to the lack of augmentation in test and training and also 267

because patch predictions are less accurate in the patch borders 268

due to incomplete image features in patch borders. This is 269

shown in Figure 3 where lesions in the border of patches are 270

not correctly segmented in the tiling method where no overlap 271

between patches was used. In the second column, where 272

patches with 50% overlap were used, each voxel received 273

multiple predictions from overlapping patches. 274

To take into account the relative uncertainty of predictions 275

near patch borders, we use a weighted soft voting approach to 276

fuse patch predictions as opposed to the conventional voting 277

(averaging) method, e.g. [35]. To this end, we calculate the 278

relative weights of soft predictions using a second-order spline 279

function at each patch center. This allows fusion of predictions 280

from all overlapping and augmented patches while giving 281

lower weights to predictions that are made by patches on 282

their borders. With 50% overlap, voxels near the borders of 283

one patch are near the center of another patch as is seen in 284

Figure 3. In our experiments we compared different scenarios, 285

in particular compared our proposed spline patch prediction 286

fusion with uniform patch prediction fusion and patch tiling. 287

D. Datasets 288

We trained and evaluated our networks on data sets from 289

the MS lesion segmentation (MSSEG) challenge of the 2016 290

Medical Image Computing and Computer Assisted Interven- 291

tion conference [36] as well as the MS lesion segmenta- 292
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tion challenge of the 2015 IEEE International Symposium293

on Biomedical Imaging (ISBI) conference [37]. T1-weighted294

magnetization prepared rapid gradient echo (MPRAGE),295

Fluid-Attenuated Inversion Recovery (FLAIR), Gadolinium-296

enhanced T1-weighted MRI, Proton Density (PD), and T2-297

weighted MRI scans of 15 subjects were used as five channel298

inputs for the MSSEG challenge, and T1-weighted MPRAGE,299

FLAIR, PD, and T2-weighted MRI scans of 5 subjects with a300

total of 21 stacks were used as four channel inputs for the ISBI301

challenge. In the MSSEG dataset, every group of five subjects302

were in different domains: 1) Philips Ingenia 3T, 2) Siemens303

Aera 1.5T and 3) Siemens Verio 3T. In the ISBI dataset, all304

scans were acquired on a 3.0 Tesla MRI scanner. Images305

of different sizes were all rigidly registered to a reference306

image of size 128× 224× 256 for the MSSEG dataset. After307

registration, average lesion voxels per image was 15,500, with308

a maximum of 51,870 and a minimum of 647 voxels.309

E. Training310

We trained our two FCNs with asymmetric loss layers to311

segment MS lesions in MSSEG and ISBI datasets. Details of312

the training process of each network are described here.313

1) 3D Unet314

Our 3D U-Net was trained end-to-end. Cost minimization315

on 1000 epochs was performed on the MSSEG dataset using316

ADAM optimizer [38] with an initial learning rate of 0.0001317

multiplied by 0.9 every 1000 steps. The training time for this318

network was approximately 4 hours on a workstation with319

Nvidia Geforce GTX1080 GPU.320

2) 3D patch-wise Dense-Net321

Our 3D patch-wise Dense-Net was trained end-to-end. Cost322

minimization on 5000 epochs (for the MSSEG dataset) and323

1000 epochs (for the ISBI dataset) was performed using324

ADAM optimizer [38] with an initial learning rate of 0.0005325

multiplied by 0.95 every 500 steps with a step growth rate of326

2 every 16,000 steps. For instance, the first growth happens327

at the 16,000th step, where the interval of 500 would be328

multiplied by two. The training time for this network was329

approximately 18 hours (MSSEG) and 3 hours (ISBI) on a330

workstation with Nvidia Geforce GTX1080 GPU. The input331

patch size was chosen 64×64×64 for the MSSEG images and332

128 × 128 × 128 for the ISBI images in a trade-off between333

accuracy of extracted features (field-of-view) in each patch and334

limitations on the GPU memory. The selected size appeared335

to be both effective and practical for comparisons.336

Similarity loss functions (including the Dice similarity co-337

efficient and our proposed asymmetric similarity loss) rely338

on true positive (TP) counts. The networks would not be339

able to learn if the TP value is zero leading to a zero340

loss value. Therefore, only patches with a minimum of 10341

lesion voxels were selected for training the patch-wise Dense-342

Net architecture. Nevertheless, equal number of patches was343

selected from each image. Therefore, the FCNs trained equally344

with the training data, although they may have had a more345

diverse pool on images with more number of lesion voxels.346

F. Testing 347

In order to test the architectures properly, five-fold cross 348

validation was used as the total number of subjects was very 349

limited. For MSSEG dataset, each fold contained 3 subjects 350

each from 3 different centers. For ISBI dataset, each fold 351

contained 4 stacks from one subject (total of 5 subjects). In 352

order to test each fold we trained the networks each time 353

from the beginning using the other 4 folds containing images 354

of 12 subjects (MSSEG) and 4 subjects with 4 stacks each 355

(ISBI). After feeding forward the test subjects through the 356

networks, voxels with computed probabilities of 0.5 or more 357

were considered to belong to the lesion class and those with 358

probabilities < 0.5 were considered non-lesion. 359

IV. EXPERIMENTS AND RESULTS 360

We conducted experiments to evaluate the relative effec- 361

tiveness of different networks, asymmetry in loss functions, 362

and patch prediction fusion on lesion segmentation. In this 363

section, first we describe the wide range of metrics used for 364

evaluation, and then present the results of experiments on the 365

two challenge datasets, where we compare our methods with 366

the results reported in the literature. 367

A. Evaluation Metrics 368

To evaluate the performance of our networks and compare
them against state-of-the-art methods in MS lesion segmenta-
tion, we calculate and report several metrics including those
used in the literature and the challenges. This includes the
Dice Similarity Coefficient (DSC) which is the ratio of twice
the amount of intersection to the total number of voxels in
prediction (P ) and ground truth (G), defined as:

DSC =
2 |P ∩G|
|P |+ |G|

=
2TP

2TP + FP + FN

where TP , FP , and FN are the true positive, false positive,
and false negative rates, respectively. We also calculate and
report sensitivity (recall) defined as TP

TP+FN and specificity
defined as TN

TN+FP and the F2 score as a measure that is
commonly used in applications where recall is more important
than precision (as compared to F1 or DSC):

F2 =
5TP

5TP + 4FN + FP

To critically evaluate the performance of lesion segmen- 369

tation for the highly unbalanced (skewed) datasets, we use 370

the Precision-Recall (PR) curve (as opposed to the receiver- 371

operator characteristic, or ROC, curve) as well as the area 372

under the PR curve (the APR score) [39], [40], [41]. For such 373

skewed datasets, the PR curves and APR scores (on test data) 374

are preferred figures of algorithm performance. 375

In addition to DSC and True Positive Rate (TPR, same as
sensitivity or recall), seven other metrics were used in the ISBI
2015 challenge. These included the Jaccard index defined as:

Jaccard =
TP

TP + FP + FN
;
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the Positive Predictive Value (PPV) defined as the ratio of true
positives to the sum of true and false positives:

PPV =
TP

TP + FP
;

the lesion-wise true positive rate (LTPR), and lesion-wise false
positive rate (LFPR), which are more sensitive in measuring
the accuracy of segmentation for smaller lesions that are
important to detect when performing early disease diagnosis
[42]. LTPR is the ratio of true positives to the sum of true
positives and false negatives, whereas LFPR is the ratio of
false positives to the sum of false positives and true negatives,
both only on lesion voxels:

LTPR =
TP

TP + FN
, LFPR =

FP

FP + TN
;

the Volume Difference (VD) defined as the absolute difference
in volumes divided by the volume of ground truth:

V D =
V ol(Seg)− V ol(GT )

V ol(GT )
,

where GT and Seg denote ground truth and predicted segmen-376

tation, respectively; the average segmentation volume which is377

the average of all segmented lesion volumes; and the average378

symmetric Surface Difference (SD) which is the average of379

the distance (in millimetres) from the predicted lesions to the380

nearest GT lesions plus the distance from the GT lesions to381

the nearest predicted lesions [37]. A value of SD = 0 would382

correspond to identical predicted and ground truth lesions.383

An overall score is also calculated in ISBI2015 challenge384

based on a combination of these metrics; however, it has385

been mentioned [37] that this single score does not necessarily386

represent the best criteria.387

B. Results388

1) Evaluation on the MSSEG dataset389

To evaluate the effect of the asymmetric loss function390

in making the trade-off between precision and recall, and391

compare it with the Dice loss function (which is the harmonic392

mean of precision and recall) in MS lesion segmentation, we393

trained our FCNs with different β values on the MSSEG394

dataset. Note that β = 1 in Equation (3) corresponds to395

the Dice loss function. For better interpretability to choose396

β values, we rewrite Equation (3) as397

F (P,G;β) =
|PG|

|PG|+ β2

(1+β2) |G \ P |+
1

(1+β2) |P \G|
(6)

Based on this equation, we chose βs so that the coefficient398

of |G \ P | (false negatives) spanned over 0.5 to 0.9 with399

an interval of 0.1 in our tests. The performance metrics are400

reported in Table I. These results show that 1) the balance401

between sensitivity and specificity was controlled by the402

parameters of the loss function; 2) according to all combined403

test measures (i.e. DSC, F2, and APR score), the best results404

were obtained from the FCNs trained with β =
√

7
3 ∼ 1.5,405

which performed better than the FCNs trained with the Dice406

loss function corresponding to β = 1; 3) the results obtained407

from 3D patch-wise DenseNet was much better than the results408

Table I
PERFORMANCE METRICS (ON THE MSSEG TEST SET) FOR DIFFERENT

VALUES OF THE HYPERPARAMETER β USED IN TRAINING THE 3D U-NET
ON FULL-SIZE IMAGES, AND 3D PATCH-WISE DENSENET WITH

DIFFERENT PATCH PREDICTION FUSION METHODS. THE BEST VALUES FOR
EACH METRIC HAVE BEEN HIGHLIGHTED IN BOLD. AS EXPECTED, IT IS

OBSERVED THAT HIGHER β LED TO HIGHER SENSITIVITY (RECALL) AND
LOWER SPECIFICITY. THE COMBINED PERFORMANCE METRICS, IN

PARTICULAR APR, F2 AND DSC INDICATE THAT THE BEST
PERFORMANCE WAS ACHIEVED AT β = 1.5. NOTE THAT FOR HIGHLY

UNBALANCED (SKEWED) DATA, THE APR AND F2 SCORE ARE PREFERRED
FIGURES OF ALGORITHM PERFORMANCE.

3D U-Net
β value DSC Sensitivity Specificity F2 score APR

1.0 53.42 49.85 99.93 51.77 52.57
1.2 54.57 55.85 99.91 55.47 54.34
1.5 56.42 56.85 99.93 57.32 56.04
2.0 48.57 61.00 99.89 54.53 53.31
3.0 46.42 65.57 99.87 56.11 51.65

3D patch-wise DenseNet + Tiling
β value DSC Sensitivity Specificity F2 score APR

1.0 67.53 68.55 99.95 66.02 70.5
1.5 68.18 74.1 99.93 68.5 71.86
3.0 62.55 75.98 99.91 67.03 67.75

3D patch-wise DenseNet + Uniform Fusion
β value DSC Sensitivity Specificity F2 score APR

1.0 68.81 75.28 99.94 69.91 72.15
1.5 68.99 79.97 99.90 71.96 73.08
3.0 63.05 83.55 99.89 70.65 69.85

3D patch-wise DenseNet + Spline Fusion
β value DSC Sensitivity Specificity F2 score APR

1.0 70.3 74.49 99.95 70.45 73.3
1.5 69.8 78.58 99.92 71.6 73.59
3.0 64.34 81.02 99.91 70.58 70.13

obtained from 3D U-net; and 4) our proposed spline fusion of 409

patch predictions led to improved performance of the patch- 410

wise DenseNet with tiling and uniform patch prediction fusion. 411

Overall, the best results were obtained with the 3D patch- 412

wise DenseNet with asymmetric loss at β = 1.5, and spline- 413

weighted soft voting for patch prediction fusion. 414

Figures 4 and 5 show the effect of different hyper-parameter 415

(β) values on segmenting a subject with high density of 416

lesions and a subject with very few lesions, respectively. 417

The improvement by using the asymmetric loss function was 418

specifically significant in cases with very small number of 419

lesion voxels as we can see in Figure 5. Independent of the 420

network architecture, training with the Dice loss function 421

(β = 1), resulted in a high number of false negatives as 422

many lesions were missed. Note that a high value of β = 3 423

also resulted in a drop in performance. Figure 6 shows the 424

PR curves for three β levels for the 3D U-Net and the 3D 425

patch-wise DenseNet with tiling, uniform fusion, and spline 426

weighted fusion of patch predictions. As it can be seen in the 427

PR curves (Figure 6) and APR results in Table I for different 428

architectures, the best results corresponding to a good trade- 429

off between sensitivity (recall) and specificity was achieved 430

using the asymmetric loss function with β = 1.5. Figure 7 431

shows the boxplots of Dice, sensitivity, and specificity for the 432

four networks trained with the loss function with different 433

β levels. Although, β = 1.5 slightly decreased specificity, 434

it led to a significant improvement in sensitivity (Figure 7) 435
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and the APR, F1 and F2 scores (Table I). We further discuss436

the significance of these results in the MSSEG data in the437

Discussion section.438

439

2) Results on the ISBI challenge440

The results of our 3D patch-wise DenseNet trained with441

the asymmetric loss function with β = 1.5 and the patch442

selection and spline-weighted patch prediction fusion on the443

ISBI 2015 challenge is shown in Table II. As demonstrated in444

the table, we ranked higher than the top five teams in 6 out445

of 9 evaluation metrics, with DSC and Jaccard index, TPR,446

LTPR, SD, and average segmentation volume among them;447

and ranked second according to the ISBI 2015 overall score.448

We note that while our main goal was to achieve high recall449

(sensitivity - TPR), which was accomplished as we argued450

that recall was more important than PPV in this application,451

we also achieved higher DSC than other methods, which was452

unexpected but showed that the data imbalance was effectively453

addressed and the trained network performed well on the test454

set. Figure 8 shows the true positive, false negative, and false455

positive voxels overlaid on axial views of the baseline scans of456

two patients with high and low lesion loads (top and bottom457

rows, respectively) from our cross-validation folds in the ISBI458

challenge experiments. These results show low rate of false459

negatives in challenging cases.460

V. DISCUSSION461

With our proposed 3D patch-wise DenseNet method we462

achieved improved precision-recall trade-off and high average463

DSC scores of 69.8% and 65.74% which are better than464

the highest ranked techniques examined on the MSSEG2016465

and ISBI2015 challenges, respectively. In the MSSEG2016466

challenge the 1st ranked team [43] reported an average DSC of467

67%, and the 4th ranked team [44] reported an average DSC of468

66.6%. In the ISBI2015 challenge we ranked higher than the469

top five teams in 6 out of 9 evaluation metrics (Table II). We470

achieved an improved performance by using a 3D patch-wise471

DenseNet architecture together with the asymmetric similarity472

loss function and our patch prediction fusion method.473

Experimental results in MS lesion segmentation show that474

all performance evaluation metrics (on the test data) improved475

by using an asymmetric similarity loss function rather than476

using the Dice similarity coefficient in the loss layer. While the477

loss function was deliberately designed to weigh recall higher478

than precision (at β = 1.5), consistent improvements in all479

test performance metrics including DSC and F2 scores on the480

test set indicate improved generalization through this type of481

training. Compared to DSC which weighs recall and precision482

equally, and the ROC analysis, we consider the area under483

the PR curves (APR, shown in Figure 6) the most reliable484

performance metric for such highly skewed data [41], [39].485

For consistency in comparing to the literature on these486

challenges we reported all performance metrics, in particular487

DSC, sensitivity, and specificity for MSSEG, and nine metrics488

as well as the overall score for ISBI. We note that for such489

highly unbalanced (skewed) data the area under the PR curve490

(APR) is considered a better performance figure than the491

area under ROC curve; and recall (TPR), the F2 scores, 492

and in particular the LTPR are more important figures than 493

PPV, the F1 score (DSC), and the LFPR. Expert manual 494

segmentation of the full extent of lesions (used as ground 495

truth) is very challenging. The detection of small lesions, on 496

the other hand, is very important; therefore lesion detection 497

measures, such as LTPR and LFPR are often considered more 498

important metrics compared to DSC. In particular, LTPR, 499

which counts the ratio of true positives to the sum of true 500

positives and false negatives, is considered a key performance 501

metric. We achieved the highest LTPR among other methods 502

in the ISBI2015 challenge test data. 503

VI. CONCLUSION 504

We introduced a new asymmetric similarity loss function 505

based on Fβ scores, that generalizes the Dice similarity coef- 506

ficient, to achieve improved trade-off between precision and 507

recall in segmenting highly unbalanced data via deep learning. 508

To this end, we added our proposed loss layer to two state-of- 509

the-art 3D fully convolutional deep neural networks based on 510

the DenseNet [28] and U-net architectures [15]. To work with 511

any-size 3D input images and achieve intrinsic data augmenta- 512

tion and balanced sampling to train our DenseNet architecture 513

with similarity loss functions, we proposed a patch selection 514

and augmentation strategy, and a patch prediction fusion 515

method based on spline-weighted soft voting. We achieved 516

marked improvements in several important evaluation metrics 517

by our proposed method in two competitive challenges. To put 518

the work in context, we reported average DSC, F2, and APR 519

scores of 69.8, 71.6, and 73.59 for the MSSEG challenge, 520

and average DSC, Jaccard and Sensitivity (TPR) scores of 521

65.74, 50.04 and 66.77 for the ISBI challenge respectively, 522

which indicate that our approach performed better than the 523

latest methods applied in MS lesion segmentation [36], [37], 524

[16], [17], [43], [44]. Based on these results, we recommend 525

the use of asymmetric similarity loss functions within our 526

proposed method based on large overlapping patches and patch 527

prediction fusion to achieve better precision-recall balancing in 528

highly unbalanced medical image segmentation applications. 529
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