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Abstract. A fully automatic brain segmentation method is presented. First the 

skull is stripped using a model-based level set on T1-weighted inversion 

recovery images, then the brain ventricles and basal ganglia are segmented 

using the same method on T1-weighted images. The central white matter is 

segmented using a regular level set method but with high curvature regulation. 

To segment the cortical gray matter, a skeleton-based model is created by 

extracting the mid-surface of the gray matter from a preliminary segmentation 

using a threshold-based level set. An implicit model is then built by defining 

the thickness of the gray matter to be 2.7 mm. This model is incorporated into 

the level set framework and used to guide a second round more precise 

segmentation. Preliminary experiments show that the proposed method can 

provide relatively accurate results compared with the segmentation done by 

human observers. The processing time is considerably shorter than most 

conventional automatic brain segmentation methods. 
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1 Introduction: 

Automated brain segmentation is an important tool for various image-based research 

of brain structures and diseases, such as Alzheimer’s disease and multiple sclerosis 

(MS). Many brain segmentation and tissue classification methods have been proposed 

and achieved different level of success in a wide variety of applications; some 

examples can be found in [1-5]. One family of the segmentation methods is the so-

called model-based approach, which uses statistical shape priors to guide the evolving 

contours [6]. This approach has been proved to be successful for fully automatically 

sub-cortical structure analysis [5]. However, when it comes to segmentation of the 

cortical gray matter, such an approach fails to deliver satisfactory results due to the 

high variation of the brain folding. In [7], we proposed a method to use a skeleton-

based implicit model for vessel segmentation where the anatomical variation is also 

too large to be represented by conventional models. In this paper, we extend the line 



skeleton to a surface skeleton to generate a personalized gray matter model for each 

patient and use it to guide the segmentation of the cortical gray matter. The proposed 

method is implemented in a fully automatic brain segmentation framework where 

skull stripping, brain ventricle segmentation and basal ganglia segmentation are made 

using a variation of the conventional statistical model-based level set method. The 

algorithm was trained on 5 manual segmented brain dataset and tested on 12 datasets 

provided by the organizer of the MR brain image segmentation challenge [8]. 

Preliminary results show that the proposed method can achieve reasonable accuracy 

with much less running time than some conventional methods. 

2 Method: 

The proposed brain segmentation method can be divided into four steps. Firstly, the 

skull is stripped using a model-based level set on T1-weighted inversion recovery 

images. Secondly, the brain ventricles and basal ganglia are segmented using the 

same method on T1 weighted images. Thirdly, the central white matter is segmented 

using a regular level set method but with high curvature regulation. Finally, to 

segment the cortical gray matter, a skeleton-based model is created by extracting the 

mid-surface of the gray matter from a preliminary segmentation using a threshold-

based level set. An implicit model is then built by defining the thickness of the gray 

matter to be 2.7 mm. This model is incorporated into the level set framework and 

used to guide a second round more precise segmentation. The details of these steps 

are further described in the following sections. 

2.1 Skull stripping 

In the proposed framework, the statistical model-guided level set method proposed 

by Leventon et al. [6] is used to strip the skull on the T1-weighted inversion recovery 

images. In contrast to [6], a threshold-based external speed function is used instead of 

the gradient-based speed function. The level set equation is summarized in Eq. 1, 

where C is a clamping function, I is the input image,  is a threshold, M is the 

statistical model, T is the global transformation and κ is the mean curvature. As 

described in [6], the statistic model is created by taking the mean of the signed 

distance functions of each segmented regions ( ) and n prominent variations 

extracted via Principal Component Analysis (PCA) (Mσ1, Mσ2, … Mσn). Then the 

model M that fits the current shape can be represented as a weighted combination of 

these components (Eq. 2). The transformation T and the weighing factors i can be 

solved by minimizing the squared distance between the model and the level set 

function, which is also a signed distance map. The optimization of the level set 

function and the model is usually performed iteratively at the same time, i.e. the 

model is re-estimated after one or several iterations of the level set evolution. In our 

implementation, we used the coherent propagation method to evolve the level set 

function, which is about 10 times faster than the usual sparse field level set algorithm 

[9,10]. It also has the ability to detect convergence of the level set function. This 



allows us to run the level set evolution until convergence and then performing the 

model-estimation step and re-running the level-set evolution, therefore it reduces the 

number of the model-estimation step. To strip the skull,  is set to 2000 in all cases, 

and α is set to negative so the contour will expand when the voxel’s intensity is below 

the threshold. The statistical model is created from 5 manually segmented brain 

datasets provided by the challenge organizer. 

 Φ/t  = α C(I(x) – )  + β M(T(x))  + γ κ(x) | Φ| (1) 

 M =  + 1Mσ1 + 2Mσ2 + … + nMσn (2) 

 

2.2 Brain ventricles and basal ganglia segmentation 

 

Fig. 1. a. An example histogram of T1 weighted images, PGM and PWM are the intensity of the 

gray matter peak and white matter peak. VGW is the local minima between the gray matter and 

white matter peaks. b. An example histogram of T2 Flair images, PFlair is the intensity of the 

brain tissue peak. 

A similar strategy as in the first step is used to segment the brain ventricles and the 

basal ganglia in T1-weighted MRI images. For the ventricles, the threshold  is set to 

(PGM+PCSF)/2, where PGM is the intensity of the gray matter peak in the histogram 

(Fig. 1a) and PCSF is the estimated intensity of cerebrospinal fluid (CSF), which is set 

to 40 for all cases. For basal ganglia segmentation, two-sided threshold function is 

used where the lower threshold is set to (PGM+PCSF)/2, the upper threshold is set to 

VGW, which represents the local minima between the gray matter and white matter 

peaks in the histogram of T1 images. The statistical models are also extracted from 

the 5 manually segmented brain datasets. 



2.3 Central white matter segmentation 

To segment the central white matter, the segmented ventricle and basal ganglia 

regions in the T1-weighted images are set to PWM (representing the intensity of the 

white matter peak in the histogram of T1 images, cf. Fig. 1a), as the example shown 

in Fig. 2a. MS lesions are also segmented in the T2-Flair images using a simple 

thresholding method where the threshold is set to PFlair + 3Flair. Here PFlair is the 

intensity of the brain tissue peak in the Flair image, and Flair is the estimated standard 

derivation of that peak (Fig. 1b). The corresponding regions of MS lesions in T1 

images are also set to PWM (e.g. Fig. 2a). A conventional threshold-based level set 

method (β in Eq. 1 is set to zero) is used to segment the central part of the white 

matter in the modified T1 images. Here  is set to VGW, and α is a fixed positive 

value. A relatively high curvature force (γ = 0.7) is used to avoid holes appearing 

around the aforementioned segmented structures and lesions. The segmented central 

white matter region in the T1-weighted images is again set to PWM for the subsequent 

cortical gray matter segmentation (Fig. 2b).  

 

Fig. 2. a. Modified T1 image before central white matter segmentation. b. Modified T1 image 

after central white matter segmentation. 

2.4 Cortical gray matter segmentation 

As the variation of brain folding is too complicated to be represented by statistical 

models, we propose to use a surface-skeleton-based model to guide the level set 

segmentation. Similar to the line-skeleton based model used for vessel segmentation 

in [7], the implicit gray matter model can be represented using a signed distance 

transform from the mid-surface of the gray matter. To generate the mid-surface, a 

threshold-based level set was run twice to segment both the interface between gray 

matter and white matter and the interface between gray matter and CSF on the 



modified T1 image from the previous step (Fig. 2b). The threshold is set to VGW and 

(PGM+PCSF)/2 for those two interfaces respectively, and γ is set to 0.2. The signed 

distance maps (positive inside) from these two interfaces are denoted by Din and Dout, 

respectively. The mid-surface is thought to be at the zero level of the combined 

distance map Dc using Eq. 3, where  is the thickness of the gray matter (set to 2.7 

mm for all cases).  

 Dc = min(Din + /2, 0) + max(Dout - /2, 0) (3) 

The mid-surface is finally extracted via a third level set segmentation using Dc as 

the external speed function. Note that in the area where the distance between two 

interfaces is greater than , a platform of zero level will appear in Dc (cf. Fig. 3a). 

This happens often in the tips of a narrow inward/outward folding where the inner or 

outer surface will stop growing prematurely due to the high curvature force. In such 

places, the speed function switches to a regular threshold function of the input T1 

image (first term in Eq. 1) and  is set to PGM. For this particular step, the input image 

is smoothed with a Gaussian kernel, so that the gray matter close to white matter will 

have higher intensity than the one close to the CSF. This strategy helps to push the 

mid-surface towards the folding direction in most cases (Fig. 3b). After obtaining the 

mid-surface and its signed distance map Dmid, an implicit membrane model can then 

be built via Eq. 4. 

 MGM = | Dmid| - /2 (4) 

The inner and outer interface segmentation of gray matter is re-run, but this time 

the model term is added to the level set equation (Eq. 1). 

 

Fig. 3. a. An example of the combined distance map Dc. The blue lines represent the interfaces, 

the dash lines indicate the zero level of the map. b. An example of the initial segmentation and 

the generated surface-skeleton (red: white matter; green: gray matter; blue: the mid surface), 

the arrows point to areas where the white matter segmentation is incorrect and the arrowheads 

point to areas where the gray matter segmentation is incorrect. Note that the mid-surface is 

estimated correctly using the proposed method. c. An example of the final brain segmentation. 



3 Results: 

The proposed algorithm was trained on 5 manually segmented brain datasets and 

tested on 12 datasets provide by the organizer of the MR brain image segmentation 

challenge [8]. As the input images are 3 mm thick slices, they were first resampled to 

an isotropic resolution of 1 mm using the sinc interpolation method. The output of our 

segmentation contains three tissue types, CSF (including ventricles), gray matter 

(including basal ganglia) and white matter. The resulted label images were then 

down-sampled to the original resolution using the nearest-neighbor method and 

compared with the manual segmentation results. The Dice coefficients, the 95th 

percentile of the Hausdorff Distance (HD) and the percentage of Absolute Volume 

Difference are measured as described in [11] and listed in Table 1. The overall 

running time of all steps was 2.5-3 minutes on a PC with an Intel i7 CPU and 8G 

RAM. 

Table 1. Automatic segmentation results compared with manual segmentation results 

 

  Dice (%) Mod. HD (mm) Abs. volume diff. (%) 

Structure Mean Std.dev Mean Std.dev Mean Std.dev 

Gray matter 82.56 1.42 2.83 0.34 7.63 4.05 

White matter 87.74 1.41 2.46 0.40 7.15 4.24 

Cerebrospinal fluid 78.34 3.08 3.09 0.32 15.63 5.67 

Brain 94.46 0.59 4.02 1.10 2.85 2.41 

All intracranial structures 96.69 0.80 3.92 1.40 5.31 2.32 

4 Discussions and Conclusion: 

The accuracy of the gray matter and white matter segmentation from the proposed 

method is close to the performance of some widely used brain segmentation software, 

such as SPM8 and FAST, reported in literature [4,12], but the running time of the 

proposed method is much shorter than the latter. However, direct comparison will 

require running that software against the same datasets, which is outside the scope of 

this paper.  

In addition to the tissue classification, the proposed method also outputs the 

surface-skeleton, which seems to be relatively accurate as judged by preliminary 

visual examination. It is worth notice that the 95th percentile of HD is around 3 mm, 

or even less for the gray matter and white matter segmentation, which is close to the 

image resolution along the z-axis. This, to some extent, confirms that the generated 

gray matter model is close to the ground truth. This skeleton itself can be useful for 

analyzing the geometrical features of brain folding. 

One limitation of our preliminary validation is that the number of training datasets 

for generating the statistic model is very small and does not include significant 

pathological changes like ventriculomegaly. This may limit the algorithm to work 



only with relatively normal brain data. Large errors in the basal ganglia segmentation 

were observed in patients with enlarged lateral ventricles. However, the ventricle 

segmentation seems to work reasonably well in such cases, thanks to the good 

contrast between CSF and brain tissue. 

Resampling is another factor that may affect the evaluation of the proposed 

method. In theory, the proposed method works better on isotropic datasets. However, 

the input images used in our experiment were up-sampled from 3 mm scans. Even 

though high-resolution 1 mm isotropic T1 images were provided in the challenge, 

they are not well aligned with the 3 mm scans on which the manual segmentation was 

performed. Applying the proposed algorithm on thin-slice T1 resulted in lower DICE 

coefficient (about 5% for gray matter) than on the resampled 3 mm T1 images.  

Some other limitations of the proposed method include using a fixed and unified 

gray matter thickness in the skeleton-based model and unified thresholds for tissue 

classification. Introducing some local adaptive strategy and combining image gradient 

information into the level set function may improve segmentation accuracy. 

In conclusion, a fully automatic brain segmentation method has been presented. 

Preliminary results show that the proposed method can achieve reasonable accuracy 

with much less running time than some conventional methods. In addition, a surface 

skeleton of the gray matter which represents the geometric features of brain folding 

can be obtained. 
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