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Abstract

Segmenting brain tissue from MR scans is thought to be highly beneficial for

brain abnormality diagnosis, prognosis monitoring, and treatment evaluation.

Many automatic or semi-automatic methods have been proposed in the liter-

ature in order to reduce the requirement of user intervention, but the level of

accuracy in most cases is still inferior to that of manual segmentation. We pro-

pose a new brain segmentation method that integrates volumetric shape models

into a supervised artificial neural network (ANN) framework. This is done by

running a preliminary level-set based statistical shape fitting process guided

by the image intensity and then passing the signed distance maps of several

key structures to the ANN as feature channels, in addition to the conventional

spatial-based and intensity-based image features. The so-called shape context

information is expected to help the ANN to learn local adaptive classification

rules instead of applying universal rules directly on the local appearance fea-

tures. The proposed method was tested on a public datasets available within

the open MICCAI grand challenge (MRBrainS13). The obtained average Dice

coefficient were 84.78%, 88.47%, 82.76%, 95.37% and 97.73% for gray matter

(GM), white matter (WM), cerebrospinal fluid (CSF), brain (WM + GM) and

intracranial volume respectively. Compared with other methods tested on the

same dataset, the proposed method achieved competitive results with compar-

atively shorter training time.

https://www.sciencedirect.com/science/article/pii/S0167865517304312


1. Introduction

Automated brain segmentation in MRI is often desired to provide medical

doctors with quantitative volume measurements of different brain structures

and provides context information for further lesion detection and quantifica-

tion. Such quantitative measurements are crucial for evaluating brain atrophy,5

monitoring the prognosis of Multiple Sclerosis (MS) patients, and analyzing

brain development progress in different ages [1],[2],[3],[4]. In addition, the struc-

ture information obtained during the segmentation provides important visual

aid for image guided surgery. Despite a substantial number of automatic or

semi-automatic brain segmentation methods proposed in literature, the perfor-10

mance of the state-of-art methods is still not satisfactory in clinical practice. In

a recent brain segmentation challenge, the best method achieved 86.12% Dice

score for gray matter(GM) and 89.39% for white matter(WM) segmentation [5].

The widely used software for brain segmentation Freesurfer and SPM achieved

77.41% and 81.17% on GM and 85.98% and 86.03% on WM respectively [3].15

The methods evaluated on this public platform methods can be roughly classi-

fied into three categories: intensity and edge based methods (including Markov

random field models [6], clustering approaches [7], Gaussian distribution models

[8]), shape prior based methods (include deformable models [9], and atlas-based

approaches [10]), and machine learning based methods (include SVM [11], KNN20

[4], random forest [12] and deep neural networks [13], [14], [15],[16]). In general,

the learning based approaches, especially the deep learning based methods, de-

livered better accuracy than the methods in the other two categories. In fact, the

top 10 methods ranked on the challenge website [5] are learning based methods,

and the top 6 methods are deep learning based methods at the time of submit-25

ting this paper. While this is convincing enough to justify the superiority of the

learning based approaches, the question whether combining shape priors into

the learning processing could further improve the results remains unanswered.

Indeed shape priors have been thought to be crucial for automated image

segmentation in many conventional segmentation frameworks, such as the de-30
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formable models and atlas-based methods. The widely-used neural image anal-

ysis software packages, such as Freesurfer [17] and SPM [18], have all some

form of shape priors built-in for brain segmentation. However, most classical

machine learning-based image segmentation methods do not explicitly take the

global shape information into the learning processing. In some learning based35

methods, the classifiers are trained to recognize the object’s shape implicitly,

such as by passing the coordinates of the voxels as image feature for training.

In deep learning methods, the shape information may be encoded by multiple

layers of convolution kernels, even though they are hard to be interpreted by

the human mind. In fact, some recent reports have suggested using deep neural40

network to represent shape models [19]. However, to our knowledge, there has

hardly been any studies that explore the possibilities of incorporating the shape

prior knowledge explicitly into a machine learning-based image segmentation

pipeline.

In this paper, we propose a new brain segmentation method that integrates45

volumetric shape models into an Artificial Neural Network (ANN). This is done

by running a preliminary level-set based statistical shape fitting process [9]

guided by the image intensity and then passing the signed distance maps of

several key structures to an ANN as feature channels, in addition to the con-

ventional spatial-based and intensity-based image features. By providing this50

so-called shape context information, even though it is not very precise, we hope

the ANN could learn classification rules that are adaptive to the location of a

sample point instead of relying on some universal rules based only on the local

appearance. The implemented method is applied on the MRBrainS13 challenge

[3] and provides relatively accurate results compared to the segmentation done55

by clinical experts and other state of the art segmentation algorithms.

2. Method

The goal of brain image segmentation is to divide the image into meaningful,

homogeneous and non overlapping regions with corresponding attributes. The
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Figure 1: Generic flow chart of proposed method for brain tissue segmentation.

proposed segmentation method for this paper consists of several parts which are60

shown in Fig. 1. In the following, the details of different parts of the algorithm

are discussed in details.

2.1. Image data and ground truth

Data from MRBrainS13 were used, comprising twenty 3T MRI brain exami-

nations from twenty different patients. All subjects were above 50 years old with65

diabetes and matched control with varying degree of atrophy and white matter

lesions. Each examination consists of 3 series of MRI images: T1-weighted, T1-

weighted inversion recovery and T2-FLAIR. All the series were aligned with each

other using a deformable registration method. The voxel size of provided data

were 0.95mm×0.95mm×3.0mm. From the twenty available datasets, five cases70

were provided with manual segmentation (ground truth) for training purposes.

The labels for the remaining 15 datasets were kept away from the participant for

evaluating the performance of each proposed method. Manually segmented im-

ages consist of nine classes in total, including cortical Gray Matter (GM), basal

4



ganglia, White Matter (WM), White Matter Lesions (WML), Cerebro-Spinal75

Fluid in the extracerebral space (CSF), ventricles, cerebellum, brainstem and

background. However, for the evaluation, only the three classes GM, WM and

CSF were considered, in which Cortical GM and basal ganglia were both consid-

ered as GM, and WM and WML were both considered as WM [3]. Cerebellum

and brainstem were excluded when evaluating the segmentation accuracy.80

2.2. Preprocessing

The aim of preprocessing is to prepare the data in a suitable way to be fed

to the classifier. In this work, the following preprocessing steps were applied to

the data before sending them to the classifiers.

2.2.1. Bias field correction85

Intensity inhomogeneity is a common artifact in MRI images. We used

N4ITK to remove the bias field [20]. It is worth noting that the MRBrainS13

datasets have been processed with another bias-field correction tool. Never-

theless, we found N4ITK could further improve the homogeneity, thus lead to

better segmentation results.90

2.2.2. Histogram matching

In this step, the histograms of all datasets were matched to that of the

first dataset. This step is important for preventing the network from being

confused by varying intensity range. Histogram matching was performed using

the HistogramMatchingImageFilter in Insight Segmentation and Registration95

Toolkit (ITK) [21].

2.2.3. Skull stripping

Since non-brain tissues, such as the skull, have a major impact on segmenta-

tion results, it is important to remove them to increase the accuracy of segmen-

tation. Skull stripping was performed using a shape model-based level set on100

T1-weighted inversion recovery images based on [22], [9]. After applying skull

stripping, any voxels outside of the brain were mapped to zero as background.
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2.2.4. Normalizing data

To remove outlier intensity, the 4th and the 96th percentile of each dataset

were calculated as boundary values, and all voxels below and above these calcu-105

lated values were clipped off and mapped to the derived boundary values. All

images were normalized to have zero mean and a standard deviation of one.

2.3. Feature Extraction

As the input to the network, features were extracted via two separate ap-

proaches.110

One set of features were conventional intensity-based and spatial-based fea-

tures. From the images, the same features as in [11] were extracted, described

as follows:

• Intensities (I) of different channels (T1-weighted and T2-FLAIR)

• The intensity after convolution with a Gaussian kernel with σ = 1, 2, 3115

mm2

• The gradient magnitude of the intensity (GMI) after convolution with a

Gaussian kernel with σ = 1, 2, 3 mm2

• The Laplacian of the intensity (LI) after convolution with a Gaussian

kernel with σ = 1, 2, 3 mm2
120

• Normalized spatial coordinates (NSC) of each voxel (x, y, z), divided by

the length, width, and height of the brain, respectively.

The intensity of the T1-IR channel was not used as a direct feature, since it had

large variability which degraded the segmentation results. In total, 32 features

were extracted and used in this stage of the method.125

Another important set of features, here used as extra channels, were the

results from the shape model-based level set method, which are described in the

next section.
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2.4. Shape Context generation based on level set

In addition to the local appearance features that are encoded in the filtered130

local intensities, we also try to put the local points into a global shape context.

This is done by first performing a rough segmentation of various brain struc-

tures and then using the signed distance maps from those structure surfaces as

additional features. In this study, we extracted six interfaces, namely the inner

surface of the skull, the surface of the lateral ventricles and basal ganglia, the135

inner and outer surfaces of the cortical GM, and the mid-surface of the cortical

gray matter. For the surface of the skull, lateral ventricles and basal ganglia,

we used a threshold-based level set method guided by statistical shape priors.

The segmentation was carried out in a hierarchical manner [23], i.e. the

skull is segmented first and its transform is used to initialize the position of140

the smaller structures, while its boundary limits the latter’s propagation. To

segment the cortical gray matter, a surface skeleton-guided level set method

reported in [9] was implemented. The principle of this method is to consider

the cortical gray matter as a blanket that can be represented with a skeleton

surface s with slowly varying thickness r. The skeleton surface s is estimated by145

first finding the mid-surface of the WM-GM and GM-CSF interfaces that are

extracted via the threshold-based level set method, and then refined with local

intensity analysis at the top/bottom of the gyri/sulci. The thickness function r

is set to 1.35 uniformly, i.e. assuming the thickness of cortical GM to be 2.7mm

everywhere.150

This parametric shape model is then used to regularize the propagation of

the threshold-based level set function to refine the segmentation of the the WM-

GM and GM-CSF interfaces. By tuning the weighting factors of shape prior

term and the image term, the distance between the interfaces and the skeleton

surface is allowed to vary smoothly between 0.35mm to 2.35mm, depending on155

the local intensity profile. The thresholds that separate WM-GM and GM-CSF

are determined through histogram analysis. A more detailed description of this

method can be found in [9]. Notice that, unlike other auto-context approaches

where the feature represents the probability of one voxel belonging to a class,
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Figure 2: Network Structure with three different layers. The input layer consists of 37 nodes

representing the features. The hidden layer consist of 100 hidden nodes, and the output layer

consists of 6 nodes representing each of the segmentation classes.

the shape context feature encodes each point’s distance to the surface of a brain160

structure.

2.5. Classifier Training

An ANN based classifier is used as the backbone of the proposed algorithm.

The Multilayer Perceptron approach was chosen, which provided relatively ac-

curate results and needed considerably shorter training time compared to other165

methods based on ANN. Fig. 2 shows the architecture of the proposed network.

Network training was performed by using a back propagation algorithm [24],

[25]. This method uses each set of pattern in the training set to minimize the

error function using gradient descent. The error function for the pth pattern170

are defined by

Ep =
1

2

∑
k

(tpk − ypk)2 (1)

where tpk and ypk are the target and output vectors corresponding to the pth

input pattern, respectively.

The whole system error can be derived from

E =
1

P

∑
p

Ep (2)
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where P is the total number of patterns in the training set.175

The learning rule in the back propagation algorithm for updating network

weights is the generalized delta rule, which calculates the weight updates from

output to input layer as follows:

wjk(t+ 1) = wjk(t)− η ∂Ep(t)

∂wjk(t)
(3)

wij(t+ 1) = wij(t)− η
∂Ep(t)

∂wij(t)
(4)

where wjk is the weight index which connects the hidden node j to the output

node k and wij connects the input node i to the hidden node j.180

In order to prevent the network to get stuck in local minima, a momentum

term was used to moderate the weight update in each iteration, as described in

[24].

For training set, n × 10000 voxels were randomly selected from n training

datasets within the brain region excluding the cerebellum and the brain stem.185

For each voxel, 37 features (32 image features plus 5 shape context features)

and the corresponding labels were passed through the network. The training

label includes 6 classes: WML, WM, Cortical GM, basal ganglia, ventricles and

CSF. The ANN training was set to stop after 1000 iterations.

2.6. Image Segmentation and Post-processing190

For segmenting the test dataset, all voxels were passed through the trained

classifier, which in turn output the probabilities of the voxel belonging to each of

the 6 classes. The voxel was assigned to the class given the highest probability.

Networks were trained with six labeled classes, and thus the network results

also included six classes. These six classes were merged to form the final three195

segmentation parts (i.e. WM, GM and CSF) following the rules described in

[3].
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2.7. Accuracy Analysis

Segmentation results were compared to the ground truth based on the Dice

similarity index, the Absolute Volume Difference (AVD) similarity index, and200

95th-percentile of the Hausdorff Distance (HD) index [3]. While the Dice coeffi-

cient indicates how the two masks overlap with each other, HD gives the largest

distance between two contours. AVD, on the other hand, can indicate whether

there is a systematic error with volume measurement. Background, cerebellum

and the brain stem were excluded from the validation phase.205

3. Results

All experiments were performed on a single desktop computer. For prepro-

cessing and post-processing steps an Intel Xeon E5-2630 2.40 GHz CPU was

utilized. The MLP algorithm was implemented in MATLAB (version 2016a)

and trained on GPU (NVIDIA GTX 1070, 8GB). The level set method was210

implemented in C++ and running on CPU. The training time was around 2

minutes for ANN inference and around 9 minutes for the shape model level set

method. The running time of the trained ANN for segmenting a 3D volume

was approximately 9 seconds, while the shape model level set method took 3-4

minutes to generate the shape context.215

The proposed MLP with shape context method (MLP-shape) was first tested

on the 5 training datasets and compared with an MLP with plain features (MLP-

plain) and the shape model guided levelset method (LS-shape) that generated

the shape context. For the shape context generation, the statistical shape mod-

els described in section 2.4 were generated using all 5 training datasets and220

applied to the 5 training datasets, while the ANN-based voxel classification

was tested using the leave-one-out method. MLP-shape and MLP-plain share

the same set of intensity and spatial features described in section 2.3. Table 1

compares the performances of these three methods on the 5 training datasets.

In almost all cases, MLP-shape delivers better segmentation results than using225

MLP with no shape context or using shape based levelset alone.
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Table 1: Effect of using shape context features

Method Dice(%)

ICV

Dice(%)

Brain

Dice(%)

CSF

Dice(%)

WM

Dice(%)

GM

MLP-plain 98.37 94.61 84.52 85.56 82.74

LS-shape 96.79 94.48 78.34 87.74 82.56

MLP-shape 98.39 95.17 85.48 87.50 84.71

Table 2: Effectiveness of selected features

Dropped set of features Dice(%)

CSF

Dice(%)

WM

Dice(%)

GM

w/o Filtered I 84.55 84.23 82.11

w/o Filtered GMI 83.38 73.80 78.70

w/o Filtered LI 84.61 84.95 82.75

w/o NSC 84.33 85.49 82.37

In order to investigate the effectiveness of other selected features besides the

shape context features, sets of experiments were performed by dropping one set

of features at a time and training classifier with rest of the features. The average

results of these experiments using leave one out method are shown in Table 2230

for CSF, WM and GM.

Fig. 3 and Fig. 4 show the effect of skull stripping and data normalization.

The final results after segmentation with the proposed algorithm are shown in

Fig. 5. The first row shows three raw input slices. The second row shows the

segmentation results of 3 classes, and the third row shows the misclassified pixels235

in those slices.

Table 3 summarizes the performance of the proposed method on the 15 test-

ing datasets. In this case, the network was trained on all 5 training datasets.

MLP-plain was not tested on the real testing cases, due to limited number

of submission allowed for each team. The evaluation was performed by MR-240
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Figure 3: Non-brain tissue removal for a sample slice (25th) from first dataset on T1-weighted

scan: Raw image on the left and skull-stripped image on the right
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Figure 4: Removing extremely high and low values for a sample slice (25th) from first dataset

on T1-weighted inversion recovery scan: On the left raw image and on the right the image

after applying this preprocessing step. (T1-IR shows the effect of this preprocessing step

clearly due to large variation of the intensity values this channel)
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Figure 5: Examples of segmentation results for three slices (10, 25, 35) of the 5th dataset.

The first row shows the raw T1-weighted scan, the second row shows the segmentation result,

and the third row shows the misclassified pixels in these three sample slices. Cerebellum and

brainstem were removed manually using the ground truth.
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Table 3: Comparison of results of selected algorithms on the MRBrainS13 data

Team GM WM CSF

DC(%) HD(mm) AVD(%) DC(%) HD(mm) AVD(%) DC(%) HD(mm) AVD(%)

CU/DL 86.15 1.47 6.42 89.39 1.94 5.84 83.96 2.28 7.44

CU/DL2 86.12 1.45 6.60 89.46 1.94 6.05 84.25 2.19 7.69

MDGRU 85.4 1.55 6.09 88.98 2.02 7.69 84.13 2.17 7.44

LS-Shape 82.56 2.83 7.63 87.74 2.46 7.15 78.34 3.09 15.63

MLP-shape 84.78 1.71 6.02 88.47 2.36 7.66 82.76 2.32 6.73

Brains13 challenge organizers, who also provided the extensive comparison to

other segmentation approaches on the same datasets. The proposed method

(labeled as STH on the challenge website) was ranked 7th taking into account

all segmentation scores, and was ranked 4th for segmenting brain tissue ( GM

+ WM ). In total, 37 teams participated in the challenge at the time of writing245

this report. In Table 3 the first three rows show the results of top three teams in

the challenge respectively. While the propose method in general has lower Dice

score, the largest differences between the top ranked method and the proposed

method is only 1.37%.

250

4. Discussion

The main contribution of this study is proposing a new segmentation algo-

rithm which incorporates the shape prior into the machine learning framework

by combining an ANN-based learning algorithm and a shape model-based level

set method. This hybrid solution delivers better performance compared to ei-255

ther of them individually (cf. Tables 1). Through visual inspection, we found

that adding the shape prior knowledge helped the algorithm to better recognize

the basal ganglia areas inside the brain than the ANN algorithm using only
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image features. When compared with the pure statistical shape guided level set

implementation, the improvement is more on the edges of the brain structures.260

It may be noted that the shape context need not be very precise for the ANN to

learn useful information from these features. In our implementation, the model-

based level set method uses only the intensity of the T1 image to perform the

segmentation, while ANN uses 32 image features of all 3 MRI sequences. Also

when compared to auto context models [4], [12] (rank 8th and 9th in the chal-265

lenge), the shape context information seems to be better than multi-iteration

auto-contexting and only needs a single iteration.

It should be pointed out that although our implementation has only been

tested on brain images, the proposed framework is rather general can be easily

extended to segment other anatomical structures with relatively small changes.270

In fact, the proposed volumetric shape context features can be easily integrated

into many other machine learning based image segmentation methods, such as

SVM, random forest or even the deep learning methods. In a recent study from

our group [26], we have tested to integrate the shape context with the random

forest method and Haar-like features, and promising results were reported in275

combination with other improvements. It is also worth noticing that the shape

context is not limited to the volumetric statistical shape models. Via a sim-

ple mesh voxelization, other types of shape priors such as active shape models

(ASM) can also be used as shape context.

In comparison to the deep learning based methods [13], [14], [15],[16], the280

proposed method is mostly inferior in terms of segmentation accuracy. But

the differences in Dice scores are relatively small, often below 1%. On the other

hand, the proposed method produces smaller Absolute Volume Difference(AVD)

to the ground truth, especially for CSF and brain volume measurement, on

which our method was ranked in the first and second place respectively. Another285

advantage of the proposed method over deep learning approaches is much shorter

training time. The training time of the top 3 winning methods was 1 day, 1

day and 2 days respectively and their training was performed on much more

powerful GPUs (NVIDIA GTX TITAN X). As both the proposed method and
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the deep learning methods are learning-based methods, from our experience,290

the networks need to be retrained if the imaging protocol is changed or simply

moved to another type of scanner. When considering both the training and

testing processes, our approach could be more attractive to be deployed in

clinical settings.

Beside the shape context features, the other 32 features have been suggested295

in previous studies by [11]. Table 2 shows the effectiveness of each set of selected

features by excluding them from the training process. As the results suggest,

dropping the NSC features has the least effect on segmentation results while

dropping gradient magnitude features degrades results considerably. Since we

want to achieve the best possible scores, for the final submission, we included300

all the features, no matter how small the contribution is.

During the study, we also explored different architectures of the ANN. For

example changing the number of node and layers, however, no significant im-

provement was observed. A number of well-known classifiers were tested in

the frame of this work. SVM, MLP, learning vector quantization (LVQ) and305

radial basis function (RBF) were tested as the main classifier. Between these

classifiers, SVM and MLP achieved slightly better performance when tried for

training dataset. The training time of MLP (on GPU) was much shorter com-

pared to SVM. Therefore, MLP was chosen as the final classifier for this study.

As seen in Fig. 5, most of the segmentation errors within the brain occurred310

at the border between different brain tissues, where the inter-observer variation

of the manual delineation could also be high. However, a single ground truth

segmentation was generated for each testing data through consensus sessions,

so the inter-observer variation of the segmentation accuracy is not available.

Yet, when comparing the Dice coefficients of the top 3 methods for each brain315

structure, the variation is mostly below 1%.

In our experiments, skull stripping was found to be a prominent source of

error. To investigate how much it could affect the results, one test was executed

with the proposed skull stripping algorithm and one test was executed by using

manual segmentation for skull striping (i.e. perfect mask). The results of this320
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approach suggest that approximately 2% of the error for segmenting ICV and

5% of the error for segmenting CSF was related to skull stripping. It had very a

small effect on the GM segmentation and almost no effect on WM segmentation.

Another challenge in processing the MRBrainS13 data is to handle the WML

class (MS lesion) properly. While running the leave-one-out test, we noticed for325

one of the datasets (patient 2), that the Dice index of WM was considerably

lower compared to other datasets. After further investigation on this specific

dataset, it was revealed that this 3D volume consisted of a greater fraction of

WML compared to other datasets. This suggests that for the training, there

needs to be a sufficient number of random samples within the WML regions to330

ensure correct classification of this specific tissue type.

There are a number of limitations with the current study. First, the number

of training and test cases are relatively small, which makes it difficult to predict

how well the method will perform given plenty of training data. Second, the

proposed segmentation pipeline does not contain an explicit model of the bias335

field that often occurs in clinical images. For inhomogeneity correction, it must

rely on third-party software such as SPM, which was used by the challenge

organizer to preprocess the images [3]. Thirdly, for creating the shape model

of the cortex, the cortical thickness was universally set to 2.7mm, which is not

ideal for patients with brain atrophy; an adaptive approach through iterative340

cortical thickness estimation might give better results.

5. Conclusion

In this paper, a fully automatic method has been proposed, which incor-

porates the shape prior into the machine learning framework by combining an

ANN-based learning algorithm and a shape model-based level set method. Re-345

sults for segmenting WM, GM and CSF of the brain using the proposed method

were relatively accurate with acceptable standard deviation while the training

and testing time were considerably shorter compared to other methods. Fur-

ther investigation is needed for developing the current method to improve the
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accuracy. Moreover, the potential generalization of the proposed algorithm to350

other fields of medical imaging segmentation is open for further studies.
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