
MAP–Based Framework for Segmentation of
MR Brain Images Based on Visual Appearance

and Prior Shape

A. Alansary 1,?, A. Soliman1,?, F. Khalifa1, A. Elnakib1, M. Mostapha1, M.
Nitzken1, M. F. Casanova2, and A. El-Baz1,??

1BioImaging Laboratory, Bioengineering Department, University of Louisville,
Louisville, KY, USA.

2Department of Psychiatry and Behavioral Science, University of Louisville,
Louisville, KY, USA.

Abstract. We propose a new MAP-based technique for the unsuper-
vised segmentation of different brain structures (white matter, gray mat-
ter, etc.) from T1-weighted MR brain images. In this paper, we follow
a procedure like most conventional approaches, in which T1-weighted
MR brain images and desired maps of regions (white matter, gray mat-
ter, etc.) are modeled by a joint Markov-Gibbs Random Field model
(MGRF) of independent image signals and interdependent region labels.
However, we specifically focus on the most accurate model identification
that can be achieved. The proposed joint MGRF model accounts for the
following three descriptors: i) a 1st-order visual appearance descriptor
(empirical distribution of signal intensity), ii) a 3D probabilistic shape
prior, and iii) a 3D spatially invariant 2nd-order homogeneity descrip-
tor. To better specify the 1st-order visual appearance descriptor, each
empirical distribution of signals is precisely approximated by a Linear
Combination of Discrete Gaussians (LCDG) having both positive and
negative components. The 3D probabilistic shape prior is learned using
a subset of 3D co-aligned training T1-weighted MR brain images. The
2nd-order homogeneity descriptor is modeled by a 2nd-order translation
and rotation invariant MGRF of 3D T1-weighted MR brain region labels
with analytically estimated potentials. The initial segmentation, based
on a 1st-order visual appearance and 3D probabilistic shape, is then it-
eratively refined using a 3D MGRF model with analytically estimated
potentials. Experiments on twelve 3D T1-weighted MR brain images con-
firm the high accuracy of the proposed approach.
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1 Introduction

Accurate delineation of the brain tissues from Magnetic Resonance Imaging
(MRI) is an essential step used in many clinical applications in diagnosis, ther-
apy evaluation, human brain mapping, and neuroscience [1]. However, segmenta-
tion approaches are subject to multiple challenges stemming from image noise,
image inhomogeneities, image artifacts such as partial volume effect, and dis-
continuities of boundaries due to similar visual appearance of adjacent brain
structures. A variety of segmentation techniques have been developed to address
these challenges. Brain MR segmentation methods can be classified into three
main categories: probabilistic and statistical-based, atlas-based, and deformable
model-based techniques.

Statistical-based approaches depend on building a prior models to describe
signal distributions of each brain sturcutre. Anbeek et al. [2] presented an au-
tomated method for the segmentation of different brain structures (White Mat-
ter (WM), Central Gray Matter (CEGM), Cortical Gray Matter (COGM), and
CerebroSpinal Fluid (CSF)) using T2-weighted and Inversion Recovery (IR) MRI
of the neonatal brains. Probability maps for each brain tissue were manually
constructed to segment each tissue class. Then, a K Nearest Neighbor (KNN)
classifier was employed using voxel intensity values and voxel coordinates as the
classification features. The obtained classes were combined into a multi-label
segmentation. A similar approach was proposed by Xue et al. [3]. Their method
employed a parametric (Gaussian) density estimation using an Expectation-
Maximization (EM) algorithm. The information from a Markov random field
prior was used to increase the spatial homogeneity limitations of the MR im-
ages. They developed a technique for eliminating partial volume averaging effects
by predicting the misclassification (e.g. CSF and GM “average” into an inten-
sity similar to WM). Song et al. [4] proposed a Probabilistic Neural Network
(PNN) framework for MRI brain tissue segmentation. The probabilistic density
functions of the brain tissues were estimated from reference vectors generated by
the Self-Organizing Map (SOM) neural network. In order to reduce the partial
volume effects, they used a Weighted Probabilistic Neural Network (WPNN)
that added weighting factors in the pattern of the summation layer. Finally, a
supervised probabilistic classification based on a Bayesian rule was applied for
soft labeling.

To overcome signal inhomogeneity and overlaps between signal distributions
of different brain structures, atlas-based approaches have emerged as powerful
segmentation tools. These approaches are based on a priori knowledge about
brain structures, and treat the segmentation problem as a registration task.
Morin et al. [5] presented an atlas-based segmentation framework based on ran-
dom walks that combines registration and labeling propagation steps. They used
a generative model to provide pixel label probabilities to give a greater impact
on the segmentation for high-confidence labels. To find the matches from target
images to atlas images, they used the Affine-Scale Invariant Feature Transform
(ASIFT) [6] and Speeded Up Robust Features (SURF) [7] registration tech-
niques. In order to avoid segmentation errors produced by registration imperfec-
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tion, Lötjönen et al. [8] introduced an optimized pipeline for multi-atlas brain
MRI segmentation. They introduced two approaches that combine multi-atlas
segmentation and intensity modeling based on using EM and graph cuts for
optimization. First, they register all atlases to the target data and a majority
voting is applied to predict the segmentation of the target image. Then, the in-
tensity modeling is used as a post-processing step to improve the segmentation.
Artaechevarria et al. [9] proposed a generalized local weighting voting scheme in
which the fusion weights are adapted for each voxel based on local estimation
of the segmentation performance. The local weighting voting outperforms tradi-
tional global strategies that estimate a single value for the segmentation accuracy
for the whole image. Lijn et al. [10] introduced a segmentation method based
on the combination of structures’ location information and appearance models.
They generated a spatial probability map, obtained from multiple atlas-target
image registrations, to implement the spatial model. The tissue appearance was
modeled by a KNN classifier based on Gaussian scale-space features. Then, a
Bayesian framework was used to combine both spatial and appearance models
and graph-cut approach was used for optimization. Sabuncu et al. [11] proposed
an automated, label fusion segmentation technique. In order to capture greater
inter-subject anatomical variability, each training data set was individually co-
registered to the test data set. Then, a nonparametric probabilistic model was
employed to fuse the training labels to compute the final segmentation.

In order to obtain continuous segmentation of brain structures, deformable
boundaries have also been recognized as more accurate segmentation techniques
of MR brain tissues. Angelini et al. [12] introduced a multi-phase level set frame-
work for the automated segmentation of brain MRIs. The segmentation of the
brain tissues (WM, GM and CSF) was solely based on homogeneity (average grey
level) measures. To avoid the need for any prior information and to speed up
numerical calculation, a random seed for initialization of the deformable bound-
aries was used. Colliot et al. [13] proposed a deformable model-based approach
that used spatial constraints, represented as fuzzy subsets of the 3D image space
as an external force to control the boundary evolution. To avoid manual se-
lection of the model parameters, a training step was required to estimate the
spatial constraints parameters. Huang et al. [14] introduced an automated, hy-
brid deformable model framework that integrates both image edge geometry and
voxel statistics features to regularize the convergence of the deformable contour.
Wang et al. [15] proposed a muti-phase level set framework to segment brain
MR images with intensity inhomogeneity. They modeled the local image inten-
sities using Gaussian distributions with different means and variances. Then, a
variational approach minimizes an energy function to compute the means and
variances that will guide the contour evolution towards the target boundaries.
Ciofolo et al. [16] developed an automated framework based on level sets for the
simultaneous segmentation of multiple structures from brain MR images. The
evolution of each level set was driven by a fuzzy decision system that combines
three factors: intensity distribution of the 3D MR volume, the relative position of
the evolving contours, and a priori knowledge provided by an anatomical atlas.
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In summary, the segmentation of MR brain images has been the subject
of extensive research. However, the above brief overview shows the following
limitations of the existing literature approaches. While known statistical-based
techniques are easy to implement, they depend only on predefined probability
models that cannot fit all of the possible real data distributions. This is due
to the fact that actual intensity distributions of brain structures are greatly
affected by several factors, such as the unique patient, scanner, and scanning
parameters. The problem of single atlas-based segmentation is that it is heavily
registration dependent and does not cover all of the anatomical variability. While
multi-atlas methods try to cover these problems, they are still challenged by
atlas selection, combination, and the associated heavy computation time. The
accuracy of deformable model-based techniques is based on the accurate design
of the guiding forces (statistical, geometric, etc.).

To overcome these limitations, we propose an automated MAP-based ap-
proach aimed at unsupervised segmentation of different brain tissues from T1-
weighted MRI. The proposed segmentation approach is based on the integration
of statistical approaches, namely a probabilistic shape prior, first-order intensity
model, and second-order appearance model. These three features are integrated
into a two-level joint Markov-Gibbs Random Field (MGRF) model of T1-MR
brain images. In this paper, we focus on the accurate identification of the spa-
tial interactions between the brain voxels and the first-order visual appearance
descriptor for the brain tissues.

2 Joint MGRF Model of T1-weighted MR Brain Images

Let Q = {0, . . . , Q − 1} and L = {1, . . . , L} denote sets of gray levels q and
region labels L, respectively. Let R denote a 3D arithmetic (x, y, z)-lattice that
supports a given grayscale image g : R → Q to be segmented and its goal labled
region map m : R → L. The 3D T1-weighted MR brain images, g, being co-
aligned to the 3D training data, and its map, m, are described with the following
joint probability model

P (g,m) = P (g|m)P (m) (1)
The above joint model combines a 3D second-order MGRF, P (m), of region
labels with the shape prior of each brain structure and a conditionally in-
dependent random field. The joint conditional distribution of image intensi-
ties given the map is P (g|m) =

∏
(x,y,z)∈R p(gx,y,z|mx,y,z). The map model

P (m) = Psp(m)Ph(m) has two parts: (i) a shape prior probability Psp(m), and
(ii) a 2nd-order MGRF model Ph(m) of a spatially homogeneous region map m
for the image g, which is aligned to the training set. In this work we focus on ac-
curate identification of the spatial interaction between the brain voxels (P (m))
and the 1st-order visual appearance descriptor for the brain tissues (P (g|m)) as
shown in Fig. 1.

2.1 Shape Model
To enhance the segmentation accuracy, expected shapes of each brain label are
constrained with a probabilistic shape prior. A training set of images, collected
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Fig. 1. Illustration of the proposed joint Markov-Gibbs model of T1-weighted MR
brain images.

for different subjects, are co-aligned by 3D affine transformations with 12 de-
grees of freedom in a way that maximizes their Mutual Information (MI) [17].
The shape prior is a spatially variant independent random field of region labels
Psp(m) =

∏
(x,y,z)∈R psp:x,y,z(mx,y,z) for the co-aligned, manually segmented

five data sets that are provided to our team by the MRBrainS13 challenge team,
specified by voxel-wise empirical probabilities for each brain label (psp:x,y,z(l), l ∈
{1, . . . , L}).

Our framework exploits four prior shapes (built at the learning stage) for
the WM, GM, CSF, and other brain structures (excluding the background). For
the training phase, we use five manually segmented data sets provided to us by
the MRBrainS13 challenge team to create the probabilistic map for each label.
During the testing phase, each data to be segmented is globally registered with
the set of training data that have been used to create the prior shape model for
each brain label.

2.2 1st-Order Visual Appearance Descriptor

In addition to the learned prior shape descriptor, we implement a 1st-order visual
appearance descriptor of each brain label. During segmentation of a data set,
this visual appearance descriptor is roughly taken into account by approximating
the 1D empirical marginal gray level distributions of the T1-weighted MR brain
images with a Linear Combinations of Discrete Gaussians (LCDG). This LCDG
model is a modified version of our previous linear combination of continuous
Gaussian probabilistic model [18, 19]. This approximation adapts the segmenta-
tion to the changing appearance, such as non-linear intensity variations caused
by patient weight and data acquisition systems (e.g. scanner types and scanning
parameters). The LCDG models the empirical distribution of each brain label
more accurately than a conventional mixture of only positive Gaussians. This
yields a better initial region map that is formed by the voxel-wise classification
of the gray values in the images.
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Let F =
(
f(q) : q ∈ Q;

∑
q∈Q f(q) = 1

)
be an empirical marginal probability

distribution of gray levels, q, for the 3D T1-weighted MR brain image, g. Each
distribution has a known number, L, of dominant modes related to the regions of
interest (in our case, L = 4). To segment an image by separating these individual
dominant modes, the individual gray level distributions that are associated with
each mode must be estimated from F. Unlike conventional modeling with a
mixture of Gaussians [20], or another simple distribution type [21] where there is
only one distribution per dominant mode, we approximate Fj much more closely
using the LCDG. The LCDG is partitioned for the whole image into multiple
LCDG submodels that each relate to a unique dominant mode (in our case, WM,
GM, CSF, and other brain structures). The Discrete Gaussian (DG) components
Ψθ = (ψ(q|θ) : q ∈ Q) then integrate a continuous Gaussian with parameters
θ = (µ, σ2); where µ and σ2 are the mean and the variance, respectively, over
successive gray level intervals. The LCDG with Cp positive and Cn negative
components, such that Cp ≥ L, is defined as follows [18, 19]:

Pw,Θ(q) =
Cp∑
r=1

wp,rψ(q|θp,r)−
Cn∑
t=1

wn,tψ(q|θn,t) (2)

with the non-negative weights w = [wp,., wn,.] such that
∑Cp

r=1 wp,r−
∑Cn

t=1 wn,t =
1. In order to precisely estimate the parameters of the LCDG model, including
the numbers of positive and negative components, EM-based techniques, namely
those introduced in [18] for approximation of a probability density model when
using a linear combination of Gaussians, have been adapted to this LCDG model.

2.3 3D Spatial Interaction MGRF Model
In order to perform a more accurate segmentation, spatially homogeneous 3D
pair-wise interactions between the region labels are additionally incorporated in
the model. These interactions are calculated using popular Potts model (i.e., an
MGRF with the nearest 26-neighbors of the voxels as demonstrated in Fig. 2),
and analytic bi-valued Gibbs potentials, that depend only on whether the near-
est pairs of labels are equal or not. Let feq(m) denote the relative frequency of
equal labels in the neighboring voxel pairs ((x, y, z), (x + ξ, y + η, z + ζ)) ∈ R2;
(ξ, η, ζ) ∈ (±1, 0, 0), (0,±1, 0), (±1,±1, 0),±1, 0,±1), (0,±1,±1), (±1,±1,±1).
The initial region map results in an approximation with the following analytical
maximum likelihood estimates of the potentials [18, 22]:

veq = −vne ≈ 2feq(m)− 1 (3)

that allow for computing the voxel-wise probabilities ph:x,y,z(mx,y,z = λ) of each
brain label; l ∈ L.

One of the advantages of the proposed approach is that it addresses the
inhomogeneities in the transition regions of different brain structures. At these
transition locations, there is typically a spatial inhomogeneity in the signal inten-
sity [23]. Importantly, in addition to signal intensity, our approach uses shape and
spatial interaction components. This provides additional information that aids in
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overcoming the variability that often results when solely taking signal intensities
into account. The proposed step-wise segmentation algorithm as demonstrated
in Fig. 3 is summarized in Algorithm 1.
Algorithm 1: Key Steps for the Proposed
Segmentation Approach

1. Use Brain Extraction Tool (BET) software [24,
25] to remove the skull from T1-weighted MR
brain images.

2. Approximate the marginal intensity distribution
P (g) of the T1-weighted MR brain image using
LCDG with four dominant modes.

3. Form an initial region map m using the marginal
estimated density and prior shape of each brain
label.

4. Find the Gibbs potentials for the MGRF model
from the initial map by using Eq. 3.

5. Improve the region map m using voxel-wise Bayes
classifier.

Fig. 2. Illustration of the
proposed 3D neighborhood
system.

Fig. 3. The proposed segmentation framework.

3 Performance Evaluation of the Proposed Segmentation
Approach

To evaluate the segmentation accuracy, we use three metrics, namely, the Dice
Similarity Coefficient (DSC), the Hausdorff metric, and the percentage volume
difference between the segmentation and the ground truth [26]. The DSC char-
acterizes the agreement between the segmented and ground truth regions [26]:
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DSC = (2 · TP)/(2 · TP + FP + FN) (4)
where TP, FP, and FN denote the True Positive, False Positive, and False Neg-
ative segmentation results, respectively. For a segmented region, SR, and its
ground truth, GT, TP = |SR ∩GT| is the area of their overlap, i.e., the num-
ber of the common points in SR and GT; FP = |SR−SR∩GT| is the number
of points in the difference between SR and TP, and FN = |GT− SR ∩GT| is
the number of points in the difference between GT and TP. The closer the DSC
to “1”, the better the segmentation. In addition to the DSC metric, a volumetric
metric is used to assess the accuracy of the segmentation. The percentage volume
difference is calculated between the segmentation and the ground truth and is
used to test the segmentation accuracy. The smaller the volume difference, the
better the segmentation.

Another metric, which is used to evaluate the segmentation accuracy, is the
Hausdorff distance. Hausdorff distance from a set A1 to a set A2 is defined as
the maximum distance of the set A1 to the nearest point in the set A2 [26]:

H(A1,A2) = maxc∈A1{mine∈A2{d(c, e)}} (5)

where c and e are points of sets A1 and A2, respectively, and d(c, e) is Eu-
clidean distance between these points. The bidirectional Hausdorff distance,
HBi(GT,SR), between the segmented region SR and its ground truth GT is de-
fined as: HBi(GT,SR) = max{H(GT,SR),H(SR,GT)}. In this work, we use
the 95-percentile bidirectional Hausdorff distance as a metric that measures the
segmentation accuracy. The smaller the distance, the better the segmentation.
The ideal case with perfect segmentation is when the bidirectional Hausdorff
distance is equal to 0.

4 Experimental Results and Conclusions

To assess robustness and computational performance, the proposed segmentation
techniques have been tested on twelve thick T1-weighted MR brain images. This
data has been acquired at the UMC Utrecht (the Netherlands) from patients
with diabetes and their matched controls (having an increased cardiovascular
risk) with varying degrees of atrophy and white matter lesions (age>50). These
12 data sets were acquired with a 3T MRI scanner with voxel size 0.958mm ×
0.958mm × 3.0mm. Our goal is to classify T1-weighted MR brain images to the
following four classes: WM, GM, CSF, and other. By grayness, some brain tissues
such as the brain stem and cerebellum are very close to WM and GM. Therefore,
the segmentation cannot be based only on an image’s 1st-order visual appear-
ance descriptor but has to also account for shape and 3D spatial relationships
between the region labels in order to accurately segment each label. Empirical
gray level density for the T1-weighted MR brain images, after removing the brain
skull, and its estimated four dominant densities are shown in Fig. 4. Figure 5
demonstrates a step by step marginal density estimation for each class (1st-order
visual appearance descriptor) using the LCDG model. As demonstrated in Al-
gorithm 1, the first step is to remove the skull using BET software [24, 25] as
shown in Fig. 6(b). The second step is to get the initial region map by using
the estimated LCDG models for each class (see Fig. 5(f)) and our prior shape
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as demonstrated in Fig. 6(c). Finally, the initial map is refined by using the
proposed three descriptors (1st-order visual appearance, 3D spatial MGRF, and
prior shape models) to get the final segmentation as shown in Fig. 6(d). Fig-
ure 7 shows the 3D results of our segmentation approach. In order to measure
the accuracy of our segmentation approach, we provided our segmentation re-
sults of the 12 T1-weighted MR brain images to MRBrainS13 challenge team
who have the ground truth that has been validated by three experts. The MR-
BrainS13 challenge team evaluated the accuracy of our segmentation approach
using the following three performance metrics: 1) DSC, 2) 95% Hausdorff metric,
and 3) percentage absolute volume difference. As demonstrated in Table 7, the
DSC for segmentation of the whole brain (GM + WM) from T1-weighted MR
brain images only is 94.87% which confirms the high accuracy of the proposed
segmentation techniques. Please see Table 7 for more details.

Our experiments show that the proposed accurate identification of the Joint
MGRF model demonstrates promising results in segmenting the brain (GM +
WM) from T1-weighted MR brain images. Our present implementation in the
C++ programming language on a Dell precession T7500 workstation with an
Intel quad-core processor (3.33 GHz each) with 48 GB of memory and a 1.5 TB
hard drive with RAID technology takes about 5.78± 0.54 sec for processing 48
T1-MR images of size 240×240 pixels each, i.e about 0.12 sec per image.

(a) (b)

Fig. 4. Typical T1-weighted MR brain images (a) and its normalized empirical density
f(q) (b).

Table 1. Accuracy of our segmentation approach using DSC, 95% Hausdorff metric,
and percentage absolute volume difference. Note that these evaluation results have
been done by MRBrainS13 challenge team using the ground truth images that have
been validated by three experts.

Structure Dice Mod. HD(mm) Abs. volume diff. (%)
Mean Std. dev. Mean Std. dev. Mean Std. dev.

Gray matter 82.89 1.66 1.64 0.29 9.61 5.65
White matter 87.98 1.80 2.12 0.57 9.68 6.89
Cerebrospinal fluid 79.18 4.37 2.57 0.52 11.10 11.07
Brain, % 94.87 0.66 2.38 0.47 4.38 1.93
All intracranial structures 96.90 0.74 3.22 0.38 1.84 2.11
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(a) (b)

(c) (d)

(e) (f)

Fig. 5. (a) Estimated density using only the four dominant Gaussian components
(p4(q)), (b) deviation between f(q) and p4(q), (c) estimated density of absolute devia-
tion, (d) LCDG components, (e) final estimated density (p(q)), and (f) final estimated
marginal density for each class.
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